А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

На поверхности Солнца определено спектральным методом содержание ядер и ионов гелия, лития, азота, кислорода. Еще богаче химический состав более холодных атмосфер звезд, где астрономы находят спектры кислорода, железа, титана, иридия и других элементов. На поверхности и в атмосфере звезды наличие ядер элементов вполне возможно, так как жесткие гамма - кванты с энергией в 10 Мэв, образовавшиеся в центральных районах звезды, пробиваясь к поверхности, теряют значительную часть энергии от столкновения с нуклонами и ядрами элементов, и становятся световыми электромагнитными волнами (энергия равна 0,4 эв). Световой диапазон электромагнитных волн не расщепляет ядра атомов на протоны и нейтроны.
Таковы условия на холодной поверхности звезды. Но недра звезд лишены условий для существования всех видов ядер элементов. А у ядра галактики даже на поверхности нет необходимых условий для существования ядер элементов из-за слишком большого потока выходящих из недр гамма - квантов.
§ 3. Новейшая гипотеза образования химических элементов.
Обобщая содержание предыдущих параграфов, сделаем заключение: в процессе эволюции концентрация нейтронов в составе звезды и ядра галактики постоянно повышается, так как основной энергетический процесс заключается в превращении протонов в нейтроны (p+ ? n0). Более последовательно это можно доказать такими рассуждениями. Главной реакцией термоядерного синтеза является реакция превращения четырех протонов в ядро гелия. Как уже было доказано в предыдущем параграфе, ядро гелия моментально расщепляется на 2p+ и 2n0 под действием жестких гамма - квантов. В составе светила после реакции синтеза четырех протонов вместо двух протонов появилось два нейтрона, а оставшиеся два протона могут дальше вступать в реакцию синтеза.
4р ? Не ? 2n0 + 2p+.
Тогда для восьми протонов описанная реакция (после полного гамма-ращепления ядер гелия и после повторной реакции соединения протонов) будет выгладить следующим образом:
8р ? 6 n + 2 p.
Рассуждая о судьбе 12 протонов (после полного гамма-ращепления ядер гелия и после повторной реакции соединения протонов), можно доказать, что их распад приведет к образованию 10 нейтронов и 2 протонов:
12р ? 10 n + 2 p.
Тысяча протонов через серию реакций «гамма - расщепления и синтеза» гелия дадут 998 нейтронов и 2 протона:
1000р ? 998 n + 2 p.
Из анализа реакций фоторасщепления (гамма - расщепления) ядер элементов внутри звезд и ядер галактик можно сделать вывод: в процессе сгорания протоны (p +) трансформируются в нейтроны (n 0), поэтому в недрах звезд и ядер галактик происходит непрерывное накопление нейтронов!
Какова дальнейшая судьба нейтронов в звездах и ядрах галактик? Из физики элементарных частиц известно, что нейтроны, которые находятся в свободном (несвязанном) состоянии больше 17 минут, претерпевают обратное превращение в протоны:
n0 ? p+ + e- + ?.
Но существовать 17 минут в бушующей топке звезды, не соединившись с рядом расположенными протонами и нейтронами при плотности материи более 10000 г/см3, не может ни один нейтрон. Поэтому образовавшиеся нейтроны вступают в ядерные связи с окружающими протонами, образуя дейтерий D 2 (D = p+ + n0 + n0) и тритий Т3 (Т = p+ + n0 + n0 + n0). Насыщая тело звезды, нейтроны вначале играют роль катализатора ядерной реакции. Причина этого становится ясна, если принять во внимание тот факт, что для синтеза четырех ядер дейтерия D и трития Т необходима более низкая температура Т °, чем для синтеза изотопа водорода H:
4H = (p+ + p+ + p+ + p+ ) + (Т ? = 10 9) ? He.
4D = 4 (p+ + n0 + n0) + (Т ? = 10 8 ) ? He + 4n0.
4T = 4 (p+ + n0 + n0 + n0) + (Т ? = 10 7) ? He + 8n0.
Таким образом, нейтроны уменьшают порог необходимого энергетического уровня для термоядерного синтеза. Ядра дейтерия и трития почти сразу же разрушаются потоками жестких гамма - квантов, но нейтроны, став свободными, опять сближаются с протонами. Это так называемые мигрирующие нейтроны, так как их нельзя назвать связанными, и в то же время они абсолютно несвободны, находятся «во временных связях» с протонами. Миграция, движение нейтронов происходит по направлению движения лучевых потоков, то есть от центра звезды к её атмосфере. По этой причине нейтроны концентрируются на поверхности звезды, где и происходит процесс образования элементов таблицы Менделеева! Ведь ядро химического элемента - это сумма протонов и нейтронов. Итак, местом термоядерных реакций и местом рождения нейтронов в теле звезды являются их недра. Термоядерные реакции трансформируют миллиарды протонов в нейтроны. Благодаря постоянным миграциям, гонимые лучевым потоком, который распространяется от центра к периферии, нейтроны быстро достигают поверхности светила. На поверхности звезд условия более благоприятные для длительного существования соединений нейтронов с протонами. Воздействие гамма - квантов, «уничтожающих» ядра элементов, проявляется слабо, так как они теряют энергию, пробиваясь к периферии звезды через плотную звездную плазму. Поэтому поверхностные слои звезд являются местом длительного существования нейтронно - протоновых связей, местом депонирования (консервирования) нейтронов при помощи создания легких и тяжелых элементов таблицы Менделеева.
Поверхностный слой звезд - единственное место во Вселенной, где происходит синтез ядер элементов (точнее, изотопов). Каким образом происходит синтез ядер элементов на поверхности звезд? Автор предлагает следующую гипотезу: элементы образовались путем накопления в их ядрах нейтронов с последующим их бета - распадом. Имеется множество фактов, подтверждающих существование именно такого механизма образования всех элементов таблицы Менделеева. Например, ученые обнаружили возможность синтеза фермия из урана-235 при ядерном взрыве, когда происходит кратковременное и мощное облучение нейтронами. Фермий мог образоваться только при реакции:
92 U 235 + 17 n 0 ? 92 U 252 ? 100 Fm 252 + 8 ? - + 8 ?.
При этом для образования 100 Fm 252 обязательно необходимо, чтобы 8 нейтронов из 17, попавших в ядро урана, превратились в протоны:
n0 ? р+ + ? - + ?.
Хорошо известна в ядерной физике другая реакция образования тяжелого элемента тория в урановых реакторах:
83 Bi 208 + 20 n 0 ? Bi228 ? 90 Th 228 + 7 ? - + 7 ?.
В этой реакции 7 нейтронов из 20 превратились в протоны и создали новый элемент. Аналогичные реакции могут происходить в поверхностном слое звезд, так как плотность нейтронов в 1 см 3 там может быть огромной. Тогда механизм образования некоторых элементов можно представить следующим образом:
Н1 + 55 n 0 ? Fe 56 + 25? + 25?.
Не4 + 95 n 0 ? Те 99 + 41 ? + 41 ?.
Поэтому можно утверждать, что по плотности потока нейтрино и антинейтрино (?) можно судить об интенсивности процесса образования элементов на поверхности звезды. Образовавшиеся ядра элементов быстро приобретают электроны (е ? или ? ? ) и становятся ионами. Все элементы таблицы Менделеева образовались на поверхности звезд путем накопления в их ядрах нейтронов с последующим их бета - распадом с образованием протонов. Термоядерные реакции превращают протоны в нейтроны (p ? n), а процесс образования элементов наоборот превращает нейтроны в протоны (n ? p).
Необходимо подчеркнуть, что явление эрупции (извержения) ионов элементов в атмосферу звезды - единственный способ выведения нейтронов из состава звезды. Так звезда освобождается от нейтронов, которые при своем изобилии являются балластом, вредными отходами, веществом, которое со временем приводит к старению звезды и ее смерти. Благодаря постоянному извержению нейтронов (в составе ионов элементов, выбрасываемых в атмосферу), звезда поддерживает их концентрацию в своих недрах на минимальном уровне. Тело звезды освобождается также от электронов, выбрасывая в свою атмосферу ионы, атомы и ядра элементов (с десятками электронов вокруг них).
Поверхность ядер галактик подвержена такому мощному облучению жесткими гамма - квантами, что это не позволяет существовать длительное время связям нейтронов с протонами, то есть не позволяет образоваться элементам таблицы Менделеева. Поверхность ядер галактик не может рождать элементы (атомы). Элементы рождаются во Вселенной только на поверхности звёзд.

§ 4. Преобладающий диапазон излучения звезд.
Астрономам хорошо известно, что звезды имеют разные диапазоны преобладающего излучения. Одни из них в основном излучают радиоволны (средняя энергия кванта 10-7 эв) и инфракрасные лучи (10-2 эв), другие - излучают в основном видимый спектр (0,4 эв), третьи - ультрафиолетовые (10 эв), четвертые - рентгеновские лучи (104 эв) и гамма - лучи (26 ·10 6 электрон - вольт). Какова причина различного доминирующего излучения звезд? При центральных термоядерных процессах звезды вырабатывается жесткое гамма-излучение со средней энергией кванта 26 ·10 6 эв (26 Мэв):
4p+ = Не + ? + 26 Мэв.
Термоядерные реакции звезды и ядра галактики не производят рентгеновских, ультрафиолетовых, световых лучей и тем более, инфракрасного и радиоизлучения! Почему же звезды испускают не жесткое гамма-излучение (26 ·106 электрон-вольт), а излучение в миллиарды раз ниже по квантовой энергии: радиоволны (средняя энергия кванта 10-7 эв), инфракрасные лучи (10-2 эв), видимый спектр (0,4 эв)?
Объяснить это можно одной причиной. Термоядерные реакции протекают только в центральных районах звезды. Кванты гамма - лучей с большим трудом пробиваются от центра к поверхности звезды, постоянно сталкиваясь с протонами тела звезды, и, передавая им часть своей кинетической энергии, превращаются в низкоэнергетические электромагнитные волны. Следовательно, чем большая толщина (радиус) звезды и чем большая плотность ее вещества, тем большую энергию потеряют гамма - лучи, прорываясь изнутри на поверхность шаровидного тела звезды. Поэтому доминирующее излучение молодых звезд- гигантов будет в виде радиоволн, а звезд - карликов - в виде рентгеновских лучей и даже гамма - лучей. При этом надо учитывать толщину и плотность водородно-пылевой атмосферы звезды, которая может дополнительно снизить энергию преобладающего излучения звезды. Аналогичные законы объясняют причины преобладающего излучения ядер эллиптических, спиральных и неправильных галактик, а также квазаров.

§ 5. Фотомеханика эрупции.
Астрономы располагают большим количеством фактов выбросов плазмы с поверхности звёзд и ядер галактик. Причина выбросов огромных масс материи состоит в существовании процесса эрупции, о котором подробнее рассказывается в этом параграфе.
1. Скорость и масса выбрасываемой материи с поверхности звезд и галактик. Эволюция галактик и звезд тесно связана с эрупцией (извержением, выбросом) плазменного вещества в окружающее пространство. Над поверхностью звезд возникают плотные и непрозрачные звездные атмосферы, которые окутывают звезду со всех сторон. Атмосфера звезды состоит из водорода и других химических элементов таблицы Менделеева, а ее масса у очень молодой звезды превышает 10 000 масс Земли. На поверхности Солнца (и у всех других звезд) эрупирующее вещество образует протуберанцы, фотосферу и «солнечный ветер», который представляет собой поток ионов водорода и других ядер элементов, удаляющихся от светила со скоростью 300 - 700 километров в секунду. Нужно сразу отметить, что причина эрупции вещества от ядра галактики аналогична той, которая заставляет извергать миллионы тонн плазмы с поверхности звезд. Правда, по массе с поверхности ядер галактик выбрасывается плазмы в тысячи раз больше, чем с поверхности звезды. Из материи, извергнутой ядром галактики, образуются звезды. В более поздних эволюционных стадиях выброшенное из ядра галактики вещество образует галактические рукава (ветви), а галактика превращается в спиральную. Скорость извержения вещества из ядер галактик может достигать 3000 - 5000 километров в секунду (при взрывных процессах у молодых галактик - у квазаров) или чаще 300 - 500 километров в секунду (у старых спиральных галактик). Скорость выброса плазмы с поверхности звёзд равняется 50 - 500 километров в секунду. Чтобы познать все этапы эволюции галактик, звезд и планет необходимо уяснить главную причину, благодаря которой происходит процесс извержения огромных масс вещества с поверхности галактик и звезд.
2. Механизм эрупции. Что заставляет плазму с большой скоростью покидать поверхность квазара, ядра галактики и звезды? Ядра элементов, ионы и атомы выбрасываются с поверхности светила давлением покидающих его электромагнитных волн. Эта сила не совсем правильно называется световым давлением. Ведь воздействуют на ядра элементов, которые располагаются на поверхности звезды и ядра галактики, не только электромагнитные волны светового диапазона (света), но и весь остальной спектр электромагнитных волн. Средняя энергия кванта (фотона) гамма - луча равна 20 ·10 6 эв, рентгеновского луча - 10000 эв, ультрафиолетового - 5 эв, кванта светового диапазона - 0,3 эв (зеленый свет), инфракрасного -10 -3 эв. Радиоволны (10 -7 эв) и волны низких частот (10 -12 эв) практически не производят давления при столкновении с ионами и атомами поверхностного слоя светила. На поверхности звезды и ядра галактики физическое давление на ионы только электромагнитных волн светового диапазона по своей силовой величине составляет (по мнению специалистов) не больше 1%, а 99% импульса силы передается гамма, рентгеновскими и ультрафиолетовыми лучами, стремительно вылетающими из ядер светила. Поэтому правильнее говорить не о «световом давлении», а о давлении электромагнитных волн на поверхность вещества (атома, иона, ядра элемента и т. д.), или о фотоновом давлении.
3. Площадь поверхности тела и величина фотонового давления. Особенно сильное фотоновое давление испытывают не ядра элементов, а ионы и атомы, так как их поверхность в тысячи раз больше поверхности ядра элементов. Например, радиус ядра водорода равен 10 -15 метра, а атома водорода - 10 -10 метра, то есть в 100 000 раз больший. Как известно, величина импульса фотонового давления прямо пропорциональна площади поверхности, на которую воздействует поток электромагнитных волн. По этой причине фотоновое давление на ядро водорода и ядра других элементов в сотни тысяч раз слабее, чем на ионы элементов или на их атомы. Из-за этого атомы и ионы, обладая значительно большей «полезной» площадью, могут развить значительно большую скорость удаления от светила, чем голые ядра элементов. Фотоновое давление на поверхности ядер галактик и поверхности крупных звезд столь велико, что способно выбросить с большой скоростью плазму (ионы элементов) на миллиарды километров от своей поверхности. «Солнечный ветер» - это поток ядер элементов. Сила воздействия фотонового давления на атом водорода зависит не только от энергии кванта, но и от количества квантов электромагнитных волн, одновременно ударяющих по поверхности атома. Теоретически в каждой единице объема может поместиться бесконечно большое количество электромагнитных волн (частиц, квантов, фотонов). Электромагнитные волны во внутренних районах светила имеют огромную плотность, то есть в каждом кубическом сантиметре могут находиться миллионы квантов всевозможных электромагнитных волн. Следовательно, на поверхность атома или иона водорода одновременно могут воздействовать миллионы квантов электромагнитных волн (световые, ультрафиолетовые, инфракрасные, рентгеновские, гамма лучи). Фотоновое давление на атомы водорода, расположенные на поверхности светила, может быть настолько интенсивным, что атомы и ионы развивают скорость в 100 - 500 километров в секунду и улетают, несмотря на мощное гравитационное притяжение светила.
4. Эрупция материи с поверхности ядер галактик и фотоновое давление. Только фотоновое давление является главной реальной силой, которая заставляет звезду и ядро галактики извергать в космическое пространство миллиарды тонн вещества. Извержение материи у звезд и молодых галактик из ядра происходит по всем направлениям. Эрупция у спиральных галактик происходит в виде спиральных рукавов (ветвей), причина этого раскрывается ниже. Вращение ядер галактик вокруг своей оси со скоростями на экваторе в несколько 300 - 700 километров в секунду создает дополнительные условия извержения (эрупции) материи с экваториальной зоны ядра. При вращении плазма на экваторе ядра галактике приобретает дополнительные центробежные силы. Однако, только один процесс вращения ядра галактики без фотонового давления никогда самостоятельно не воспроизведет эрупцию материи.
5. Фотоновое давление ограничивает массу квазаров. Важно отметить, что фотоновое давление играет роль "ограничителя массы" квазаров (будущих ядер галактик) и звезд при их образовании. Если бы не существовало факторов ограничения, то один гравитационный центр (в каком-то месте космического пространства) вобрал бы в себя всю массу Вселенной.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144