А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Изучена функция многих командных нейронов, запускающих определенные двигательные акты.
Нейроны, которые реагируют на тоническое мотивационное возбуждение, были исследованы К.В. Судаковым и получили название нейронов «ожидания». При пишевом возбуждении, возникающем естественным путем или в результате электрического раздражения «центра голода», расположенного в латеральном гипоталамусе, эти нейроны разряжаются пачками спайков. С удовлетворением пищевой потребности пачечный тип активности заменяется одиночными спайками.
Нейроны новизны, активирующиеся при действии новых стимулов и снижающие свою активность по мере привыкания к ним, обнаружены в гиппокампе, неспецифическом таламусе, ретикулярной формации среднего мозга и других структурах. В гиппокампе найдены также нейроны тождества, опознающие знакомые (многократно повторяющиеся) стимулы. В.Б. Швырковым выделена группа нейронов поискового поведения, которые становятся активными только во время ориентировочно-исследовательского поведения кролика.
Особую группу составляют нейроны среды, избирательно возбуждающиеся при нахождении животного в определенной части клетки. Нейроны среды найдены Ю.И. Александровым в моторной, со-матосенсорной и зрительной коре у кролика. Нейроны среды в коре сходны с нейронами места, найденными О'Кифом в гиппокампе кролика. Нейроны места также активируются лишь при определенном расположении животного в экспериментальном пространстве.
Выделенные группы нейронов заложили основу функциональ-
11
ной классификации нейронов и позволили приблизиться к пониманию нейронных механизмов поведения.
Изучение нейронных механизмов психических процессов и состояний существенно ограничено возможностью проводить подобные эксперименты лишь на животных. Исключение составляют те исследования, которые выполнены на базе нейрохирургических клиник, когда регистрация нейронной активности мозга человека продиктована диагностическими задачами в лечебных целях. Поэтому всегда возникает вопрос о правомерности использования результатов, полученных в опытах на животных, для объяснения мозговых механизмов психических функций человека. Вместе с тем знания, которыми сегодня располагают исследователи, о принципах кодирования информации в нервной системе свидетельствуют о существовании некоторых универсальных механизмов клеточного функционирования, общих для всех живых организмов. Так, свойство приобретенной памяти на нейронном уровне опосредовано функциями вторичных посредников, фосфорилированием-дефосфорилированием рецептивных белков, экспрессией генов. Это вселяет определенную уверенность в то, что закономерности, изученные на простых объектах, могут быть распространены и на более сложные системы.
К тому же, все более многочисленными становятся доказательства того, что формы взаимодействия организма со средой, эволюционно возникшие более поздно, не отменяют предыдущие. Они сохраняются и сосуществуют вместе, наслаиваясь друг на друга. Примером может служить взаимодействие в передаче информации двух классов информационных молекул: медиаторов и пептидов. Медиаторы, появившиеся в эволюции много позже пептидов, передают информацию на близкое расстояние и по анатомическому адресу: по цепочке от нейрона к нейрону. Пептид действует на большие расстояния и по химическому адресу. Установлена важная роль пептидов в запуске различных типов поведения не только у простейших, например поведения кладки яиц у морского моллюска аплизии, но и пищевого поведения у кролика. Кроме того, пептиды образуют биохимическую основу эмоций страха, тревоги у человека. Обе системы передачи информации: эволюционно более поздняя — синаптическая и более древняя — парасинаптическая, или пептидергическая, — сосуществуют и у высших животных, тесно взаимодействуя друг с другом. Таким образом, эволюция, создавая новые и более совершенные формы адаптации организма к среде, сохраняет незыблемым принцип биохимической универсальности всех живых организмов. Он проявляется в принципиально сходных системах функционирования, общих для всех клеток. Это подчерки-
12
вает важность проведения нейронных исследований на животных для проникновения в мозговые механизмы психических явлений.
Е.Н. Соколов, решая проблему переноса результатов исследований, выполненных на животных, на человека, формулирует принцип психофизиологического исследования, который звучит так: человек — нейрон — модель. Это означает, что психофизиологическое исследование начинается с изучения поведенческих (психофизических) реакций человека. Затем оно переходит к изучению механизмов поведения с помощью микроэлектродной регистрации нейронной активности в опытах на животных, а у человека — с использованием ЭЭГ и вызванных потенциалов. Интеграция данных психофизического и психофизиологического исследований осуществляется построением модели из нейроподобных элементов. При этом вся модель как целое должна воспроизводить исследуемую функцию на уровне макрореакций, а отдельные нейропо-добные элементы должны обладать характеристиками реальных нейронов, участвующих в выполнении изучаемой функции. Модель выступает в качестве рабочей гипотезы. Выводы, которые вытекают из модели, проверяются в новых исследованиях на психофизическом и психофизиологическом уровнях. При условии, что результаты опытов не совпадают с моделью, она изменяется. Таким образом, в модели накапливается все более полная информация об объекте исследования.
Широкую перспективу для изучения мозговых механизмов психических процессов открывают новые современные методы неин-вазивного изучения мозга человека. Это прежде всего магнитоэн-цефалография, дополняющая возможности регистрации ЭЭГ, а также различные методы томографии. Среди них следует выделить позитронно-эмиссионную томографию (ПЭТ) и магнитно-резонансную томографию (МРТ). Чрезвычайно эффективным является метод измерения локального мозгового кровотока. К новым методам относится и тепловидение мозга.
Глава 2
МЕТОДЫ В ПСИХОФИЗИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ
С момента появления психофизиологических исследований при их проведении наиболее широко применялись и продолжают использоваться вегетативные реакции: изменения проводимости кожи, сосудистые реакции, частота сердечных сокращений, ар-
13
териальное давление и др. Однако регистрация вегетативных реакций не относится к прямым методам измерения информационных процессов мозга. Скорее всего они представляют некоторую суммарную и неспецифическую характеристику информационных процессов. Кроме того, одна и та же вегетативная реакция (например, кожно-гальванический рефлекс — КГР) может быть связана с информационными процессами самого различного содержания. Появление КГР можно наблюдать как при усилении внимания, так и при оборонительной реакции. Однако по некоторым вегетативным реакциям можно дифференцировать различные рефлексы. Так, Ф. Грэм и Р. Клифтон (Graham F., Clifton R., 1966) предложили использовать фазическую реакцию снижения ЧСС в качестве признака, отличающего ориентировочный рефлекс от оборонительного; в последнем случае ЧСС меняется в противоположном направлении, т.е. увеличивается. Ранее Е.Н. Соколов (1958) предложил различать эти рефлексы по сосудистым реакциям головы и руки. Ориентировочный рефлекс сочетается с расширением сосудов головы, тогда как оборонительный — с сужением. При этом в обоих случаях сосуды руки реагируют сужением.
Существует несколько причин, по которым вегетативные реакции могут быть использованы только в качестве непрямого метода изучения информационных процессов:
• они слишком медленны и протекают с задержкой;
• слишком тесно связаны с изменением функционального состояния и эмоциями;
• они неспецифичны в отношении стимулов и задач.
Однако это не означает, что вегетативные показатели не обладают высокой чувствительностью. Так, во время дихотического прослушивания значимые стимулы (произнесение имени испытуемого), хотя и подаются через игнорируемый слуховой канал, т.е. не контролируемый произвольным вниманием, часто вызывают КГР.
Некоторое преимущество перед вегетативными реакциями имеет регистрация электрической активности мышц — электро-миограмма (ЭМГ), которую отличает высокая подвижность. Кроме того, по некоторым специфическим паттернам ЭМГ, зарегистрированным от мышц лица, с высокой степенью точности можно идентифицировать различные эмоциональные состояния. Регистрация движений глаз (окулограмма) находит применение в эргономике. В целях безопасности этот показатель используется для контроля за состоянием водителей, долго находящихся за рулем автомашины или локомотива.
14
2.1. ЭЛЕКТРОЭНЦЕФАЛОГРАФИЯ
В традиционной психофизиологии широко используется также метод регистрации электрической активности мозга — электроэнцефалограмма (ЭЭГ). Спонтанная электрическая активность мозга характеризуется специфическими ритмами определенной частоты и амплитуды и одновременно может быть записана от многих участков черепа. Это позволяет изучать пространственные специфические паттерны ЭЭГ и их корреляцию с высшими психическими функциями.
ЭЭГ отражает колебания во времени разности потенциалов между двумя электродами. Для расположения электродов используют международную схему «10-20» (Jasper H., 1958). Отведение маркируют буквой, указывающей на область мозга, от которой оно производится, — F, О', Т, Р, С (рис. 1). Выделяют следующие ритмы мозга. Альфа-ритм с частотой 8—13 ,Гц и амплитудой 5— 100 мкВ регистрируется преимущественно в затылочной и теменной областях. Бета-ритм имеет частоту 18—30 Гц и амплитуду колебаний около 2-20 мкВ. Его локализация — в прецентральной и фронтальной коре. Гамма-колебания охватывают частоты от 30 до 120-170 Гц, а по данным некоторых авторов — до 500 Гц при их амплитуде около 2 мкВ. Их можно наблюдать в прецентральной, фронтальной, височной, теменной и специфических зонах коры. Дельта-волны возникают в диапазоне 0,5—4,0 Гц (20—200 мкВ), зона их появления варьирует. Тема-волны имеют частоту 4—7 Гц (5—100 мкВ) и чаще наблюдаются во фронтальных зонах. В височной области можно видеть каппа-колебания на частоте 8—12 Гц (5— 40 мкВ). Фокус лямбда-колебаний (12-14 Гц, 20-50 мкВ) приходится на вертекс. Сонные веретена имеют частоту 12—14 Гц и широкую зону распространения. Выделяют эквиваленты альфа-ритма, которые имеют ту же частоту колебаний, что и альфа-ритм, но другую локализацию, и чувствительны к другим видам модальности. В области роландовой борозды регистрируется мю-ритм (роландичес-кий, или аркообразный), отвечающий блокадой на проприоцеп-тивные раздражения. В височной коре находят may-ритм, который подавляется звуковыми стимулами. С развитием компьютерной техники широкое распространение получили методы спектрального и корреляционного анализа ЭЭГ (Русинов B.C. и др., 1987; Джен-кинс Г., Ватте Д., 1971, 1972; Данилова Н.Н., 1992).
Рисунок ЭЭГ меняется с переходом ко сну и с изменениями функционального состояния в бодрствовании, во время эпилептического припадка. ЭЭГ удобно использовать для выявления случаев с потерей сознания.
15
50 мс
500 мс
Рис. 2. Основные компоненты звукового ВП, зарегистрированного между вертексом и правым сосцевидным отростком в ответ на щелчок (60 дБ над
уровнем порога), предъявляемый на правое ухо с частотой 1 Гц. а — стволовые, б — среднелатентные, в — длиннолатентные компоненты; Н — негативные, П — позитивные компоненты. Для трех групп компонентов временные шкалы и калибровка различны. Начало временных шкал соответствует моменту подачи стимула. Каждая кривая получена в результате усреднения 1024 индивидуальных ответов (по R. Naatanen, 1992).
Среднелатентные и длиннолатентные компоненты отражают функционирование кортикального уровня слухового анализатора. Среднелатентные компоненты (Н0, П0, На, Па, Нб) регистрируются от первичной слуховой коры, имеют малую амплитуду, более лабильны, чем стволовые потенциалы, чувствительны к сну, наркозу. Максимальная их амплитуда вызывается звуковыми тонами речевого диапазона. Длиннолатентные ответы включают компонент Н, с латенцией пика в 100 мс. Потенциал характеризуется 18
полимодальностью и чувствительностью к активации. Кроме того, на него может накладываться другой потенциал — негативность рассогласования (HP), которую связывают с процессами пред-внимания (см. главу «Внимание»). Компонент П2 имеет специфические и неспецифические составляющие. Волна Н2 также включает несколько компонентов.
Позже техника усреднения ВП была применена для выявления потенциалов, связанных с движением. Участки ЭЭГ усреднялись относительно не стимула, а начала движения. Это дало возможность исследовать моторные потенциалы и потенциалы готовности, предшествующие движению. Для обозначения всех групп потенциалов был введен общий для них термин — «потенциалы, связанные с событиями» (ПСС), объединяющий ВП, моторный потенциал и др.
На основе многоканальной регистрации ЭЭГ был разработан метод картирования биотоков мозга (brain mapping). Картирование дает представление о пространственном распределении по коре любого выбранного показателя электрической активности мозга. Это может быть ВП, один из его компонентов или альфа-ритм (или другие частотные полосы спектра ЭЭГ). Значения мощности выбранного показателя подразделяются на уровни. В одном варианте каждому уровню приписывается свой цвет и изменение локу-са активности выглядит как перемещение определенного цвета по карте. В другом варианте значения показателя, принадлежащие одному уровню, соединяются изолиниями, как на топографических картах, на которых можно видеть возвышенности и впадины. Рассматриваются карты, полученные в разное время и в разных условиях. Этот метод позволяет выявить фокусы активности мозга. Используется процедура вычитания одной карты потенциалов из другой, что позволяет связать паттерн ЭЭГ-активности с той или другой когнитивной операцией. На рис. 3 приведен пример картирования мозговой активности по основным ритмам ЭЭГ для двух состояний взрослого испытуемого (открытые и закрытые глаза). Измерялась мощность распределения для каждого ритма (дельта, тета, альфа, бета-1, бета-2) в процентах. Показаны карты максимального различия и сходства для сравниваемых двух состояний. Открытые глаза, создающие условия для перцептивной активности, вызывают усиление бета-2 с фокусом в теменно-затылочной области правого полушария, отвечающего за конкретно-образное мышление и сенсорно-пространственные преобразования. Второй фокус активности бета-2 локализован в левой фронтальной коре, функции которой связаны с управлением выполняемой деятельности и рабочей памятью. Одновременно открытые глаза усиливают мощность бета-1 в теменно-центральных отведениях обоих полушарий.
19
Рис. 4. Локализация дипольных источников для компонентов вызванных потенциалов П180 (в области таламуса) и ПЗЗО (в области поясной извилины) на предъявление схематического изображения лица с отрицательной эмоцией. Данные по локализации компонентов ВП и их совмещение с томографическими срезами мозга получены на программе
BrainLoc.
Чтобы сжать информацию, содержащуюся в карте с изолиниями, делают следующий шаг: рассчитывают некоторый источник тока — диполь, эквивалентный реальному источнику тока в мозге. Определяют его локализацию, ориентацию, длину. Таким диполем обычно можно объяснить до 80-90% потенциалов, зарегистрированных от поверхности черепа. Процедура определения диполя включает построение новой карты распределения потенциалов, исходя из характеристик первично рассчитанного диполя. Затем рассчитанную карту сравнивают с исходной картой потенциалов. При их различии включают процедуру итерации, которая вносит коррективы в локализацию и характеристики рассчитанного диполя. В результате расчетная карта потенциалов максимально при-
21
ближается к исходной. При расчете диполя учитывают различия распространения тока в объемном проводнике для разных типов ткани, находящейся под электродом (кожа, кости черепа, мозговые оболочки, структуры мозга).
На рис. 4 представлены результаты расчетов дипольных источников для двух компонентов ВП. Наложение данных об источниках ЭЭГ-активности на структурные томограммы мозга конкретного человека, полученные методом структурной магнитно-резонансной томографии, дает наглядное представление о распределении локусов активации по структурам мозга. Соединение двух методов: структурной магнитно-резонансной томографии и дипольной трехмерной локализации источников электрической активности мозга — позволяет получать результаты, близкие тем, которые обычно выявляются только методами функциональной томографии (см.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50