А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 


Существование обратных связей от префронтальной коры к основным хранилищам памяти позволяет по-новому взглянуть на механизм ретроградной амнезии. Амнестические агенты действуют на актуализированные энграммы, когда они используются в режиме рабочей памяти. Это касается как старых следов, активиро-
120
ванных для оперативного использования, так и новых, только что приобретенных. В результате нарушения работы нейронов памяти префронтальной коры вносится искажение в содержание информации, которая перезаписывается через обратные связи для длительного хранения, что приводит к избирательной потере той памяти, которая предварительно была активирована.
Один из вопросов, который продолжает волновать психологов и психофизиологов, — почему мы, как правило, не помним или очень быстро забываем свои сновидения? Частичный ответ на этот вопрос дают недавние исследования метаболической активности структур мозга методом ПЭТ в цикле бодрствование—сон. Во время парадоксального сна выявлена сильная инактивация префронтальной (дорзолатеральной и орбитальной) коры — структуры, ответственной за рабочую,память. Одновременно мощная активация охватывает лимбическую систему (особенно миндалину) и часть ассоциативной зрительной и слуховой коры. Во время парадоксального сна параллельно инактивации префронтальной коры отмечена редукция высвобождения норадреналина и серотонина (из синего пятна и ядер шва) — медиаторов, ответственных за обучение на отрицательном и положительном подкреплении (Hobson J.E., Stickgold R., Pace-Schott E.F., 1998). Новые комбинации образов, которыми так насыщены сновидения, вследствие блокады норадренергической и серотонинергической систем не получают подкрепления и из-за инактивации механизма рабочей памяти не переписываются на место постоянного хранения.
6.2. МНОЖЕСТВЕННОСТЬ СИСТЕМ ПАМЯТИ
Современные исследования мозга, выполненные методом ПЭТ и функциональной МРТ, свидетельствуют, что актуализация следов памяти требует одновременной активации многих структур мозга, каждая из которых выполняет специфическую функцию по отношению к процессам памяти. Процессы памяти связывают с фронтальной, височной и париетальной корой, мозжечком, ба-зальными ганглиями, миндалиной, гиппокампом, неспецифической системой мозга.
Процесс формирования следа памяти характеризуется перемещением локусов активности по структурам мозга. Вновь формируемая энграмма в отличие от старого следа памяти представлена в мозге более широкой зоной активации.
Актуализация следа памяти предполагает обязательное появление активации в префронтальной коре, которая в режиме рабочей памяти обеспечивает считывание информации из основного
121
хранилища памяти — височной и теменной коры — и интеграцию ее на нейронах префронтальной коры. На пространственную локализацию активации влияет специфика информации, содержащейся в энграмме, которая выбирается в соответствии с решаемой задачей в системе целенаправленного поведения.
Высказана гипотеза о том, что след памяти через разное время после обучения реализуется разными по своему составу нейронными ансамблями (Греченко Т.Н., 1997). Как показало изучение динамики ассоциативного обучения у изолированных нейронов, более чем у 80% нейронов наблюдается отсроченное обучение. Эффект обучения проявляется через 5—40 мин после завершения процедуры обучения. Непосредственное или отсроченное обучение каждого нейрона привязано к определенному моменту времени и является устойчивой индивидуальной характеристикой нейрона при конкретном типе обучения. «Плавание» энграммы по структурам мозга (нейронным ансамблям) рассматривается как принцип организации памяти.
6.2.1. Мозжечок и процедурная память
Мозжечок относится к многофункциональным структурам мозга. Среди его функций — сохранение равновесия, поддержание позы, регуляция и перераспределение мышечного тонуса, тонкая координация произвольных движений. В последние годы выявлена его способность одновременно с корой формировать все виды классических условных рефлексов. Благодаря связям клеток Пуркинье мозжечка со всеми сенсорными системами через мшистые, а затем через параллельные волокна, а также с нижней оливой, откуда поступают сигналы о всех совершаемых безусловных рефлексах, клетки Пуркинье представляют уникальную основу для конвергенции условного и безусловного сигналов.
Зачем в мозжечке параллельно неокортексу формируются условные рефлексы? Какую новую функцию по сравнению с корой берет на себя мозжечок? Предполагают, что мозжечок контролирует точность выполнения движений во времени, так как только мозжечок обладает способностью в любой момент времени заблокировать любую двигательную реакцию или, наоборот, дать ей возможность реализоваться. При поражении мозжечка клиницисты описывают явление дисметрии— плохое выполнение точных движений.
Причастность мозжечка к выработке классических условных рефлексов доказывается опытами с отключением холодом и разрушением его структур. Временное охлаждение моторных нейронов во время обучения блокирует выполнение условного и безус-
122
ловного рефлексов, но не нарушает сам процесс обучения. С восстановлением функций моторных нейронов можно обнаружить, что процедура обучения в этих условиях завершилась выработкой условного рефлекса, т.е. для процесса обучения исполнение условной и безусловной реакций необязательно. Если же во время выработки условного рефлекса холодом отключить кору и ядра мозжечка, обучение будет невозможным. Частичным разрушением ядер моста, откуда берут начало мшистые волокна, несущие афферентную информацию к клеткам Пуркинье, можно вызвать выпадение условных рефлексов на специфическую модальность. Замена условного сигнала электрической стимуляцией ядер моста приводит к более быстрому формированию условного рефлекса. Разрушение нижней оливы препятствует формированию условных рефлексов в мозжечке. Новые доказательства роли мозжечка в выработке классического условного рефлекса получены на мышах-мутантах, у которых через 2—4 недели после рождения происходит полная дегенерация коры мозжечка. Такие мыши способны лишь к частичному имплицитному обучению за счет ядерных структур мозжечка.
Значительный прогресс в изучении нейронных взаимодействий в мозжечке при выработке классических условных рефлексов был достигнут в работах Рихарда Томпсона и его коллег, доказавших, что условный мигательный рефлекс формируется не только в коре, но параллельно и в локальной зоне мозжечка. В качестве условного сигнала они использовали световой или звуковой раздражитель, а безусловным рефлексом служило мигание на обдувание воздухом роговицы кролика.
Основными клеточными элементами коры мозжечка являются клетки Пуркинье. Их дендриты восходят к поверхностным слоям, а аксоны идут к нейронам ядер мозжечка (рис. 26). Кроме клеток Пуркинье, в коре мозжечка имеются зернистые (или клетки-зерна) и корзинчатые клетки. Афферентная информация поступает в мозжечок к зернистым клеткам от мшистых волокон (аксонов нейронов моста). Клетки-зерна посылают параллельные волокна к ден-дритам каждой клетки Пуркинье, образуя на них множество синапсов. Параллельно клетки-зерна образуют синапсы и на корзин-чатых клетках (интернейронах), оканчивающихся тормозными синапсами на соме клетки Пуркинье. Активация клеток Пуркинье создает торможение у нейронов ядер мозжечка посредством ГАМК-тормозного медиатора и как следствие — торможение нейронов красного ядра, управляющих двигательными рефлексами. На дендриты клеток Пуркинье конвергируют не только параллельные волокна зернистых клеток, но и лазящие (или ползующиё) волок-
123
Лазящее волокно
Рис. 26. Схема нейронной сети в мозжечке, обеспечивающей функционирование условного мигательного рефлекса.
на — аксоны нейронов нижней оливы. Имеется около 15 млн клеток Пуркинье. Каждая из них имеет возбуждающие синаптические контакты только с одним лазящим волокном и много тысяч синапсов — от параллельных волокон.
Таким образом, на дендритах каждой клетки Пуркинье сходятся два потока влияний: от самых разных афферентов (параллельные волокна) и от нижней оливы через одно лазящее волокно.
Сигнал, формирующийся в нижней оливе от безусловного рефлекса, т.е. сигнал от подкрепления, передается лазящему волокну, которое осуществляет селективный выбор определенной клетки Пуркинье, действуя по принципу: одно лазящее волокно — одна клетка Пуркинье. Условный раздражитель представлен на клетках Пуркинье возбужденным параллельным волокном. Подобная конвергенция волокон имеет место и на нейронах ядер мозжечка.
124
Путь ус жителя мозжеч ловного раздра к структурам ка I 1уть безусловного аздражителя к структурам юзжечка
Кс мозя >ра ;ечка яки инье) t \
Мши воло стые кна (кл« Пурк Лазящие волокна
'
>. Ядра
Дуга условного рефлекса мозжечка
'
Красное ядро Нижняя олива
Ядра моста
^


Мотонейроны Ядра лицевых
а 1 <и в о X а о 5 5 О ю ? $ мышц
Акустическое ядро k Ретикулярная формация
Мышца третьего века Ядра тройничного нерва



Звук (условный раздражитель) Воздух (безусловный раздражитель)
• Реакция
Рис. 27. Схема взаимодействия мозжечка и структур мозга, причастных к выработке условного мигательного рефлекса.
Обдувание воздухом роговицы возбуждает ядра тройничного нерва и VI и VII пары ядер лицевых мышц. Сигнал достигает мотонейронов, управляющих движением мышц века, и вызывает мигательную реакцию. От ядер тройничного нерва к ядрам лицевых мышц идет дополнительный путь через РФ, а также путь к мозжечку через нижнюю оливу (рис. 27). Нейроны мозжечка имеют только один выход — пучок аксонов клеток Пуркинье.
125
Установлено, что клетки Пуркинье характеризуются тонической спонтанной активностью. Ее увеличение означает усиление их тормозных влияний на нейроны ядер мозжечка и красное ядро. Оно уменьшается со снижением активности клеток Пуркинье. Тем самым создаются условия для активации моторных центров и появления двигательной реакции.
При выработке условного рефлекса в мозжечке возникает избирательное торможение определенных клеток Пуркинье по принципу «торможение торможения», в результате чего из-под тормозного контроля высвобожается определенный безусловный рефлекс.
Плохое выполнение точных движений у пациентов с дисфункцией мозжечка сочетается с дефектом в когнитивной сфере. У них нарушены последовательность и согласованное исполнение когнитивных операций, из-за этого страдают генерация идей, формулирование гипотез. Таким образом, можно говорить не только о двигательной, но и о когнитивной дисметрии, возникающей в результате нарушений функций мозжечка. Мозжечок работает в единой системе с фронтальной корой и таламусом. Префронтальная кора, мозжечок и таламус, по данным ПЭТ, активируются одновременно. Это объясняют тем, что функция префронтальной коры, которая задает программу действий, дополняется функцией мозжечка, который контролирует точное ее исполнение во времени. Возможно, что дезорганизация мышления у шизофреников связана не только с нарушением рабочей памяти, но и с дисфункцией циркуляции процессов в системе префронталъная кора—таламус— мозжечок. По данным, полученным с помощью ПЭТ, у таких пациентов уровень кровотока в этих структурах по сравнению с нормой снижен.
6.2.2. Миндалина и эмоциональная память
В 1937 г. чикагские исследователи Г. Клювер и П. Бьюси опубликовали результаты опытов с удалением у обезьян обеих височных долей вместе с миндалиной и гиппокампом. После операции у обезьян наблюдалось странное поведение. У них пропала всякая агрессивность, в том числе та, которая необходима для самозащиты и поддержания своего статуса во взаимоотношениях с другими особями. Дикие и агрессивные обезьяны после такой операции становились спокойными и доверчивыми. При этом они стали менее осторожными, их сексуальная активность повысилась и стала неупорядоченной. Оперированные животные без разбору исследовали все объекты, даже опасные, забирая их в рот (психическая слепота). Кроме того, обезьяны утратили страх, перестали бояться
126
змей, хотя перед операцией при виде их приходили в ужас. Они как будто перестали отличать хорошую пищу от плохой, пригодного полового партнера от непригодного, опасные предметы и сигналы от безопасных. Подобный комплекс нарушений наблюдался и у больных с повреждением височных долей мозга. Он получил название «синдром Клювера — Бьюси».
Позже было доказано, что исчезновение эмоций страха прежде всего связано с нарушением функций миндалины и ее связей с нижневисочной корой, где локализованы гностические единицы, реагирующие на эмоциональную экспрессию. Связь миндалины с отрицательными эмоциями и особенно со страхом в 50-х годах получила подтверждение в опытах нейропсихолога из Оксфорда Л. Вейскранца, который производил избирательное разрушение миндалины у обезьян.
Миндалина у человека — сложное комплексное образование, включающеее несколько групп ядер, расположенных в глубине височной доли и имеющих многочисленные связи со многими структурами мозга. Наиболее часто в миндалине выделяют дорзо-медиалъную (или центральное ядро) и базолатеральную части (или латеральное ядро) (рис. 28). Центральное ядро представляет выход миндалины к исполнительным механизмам. Электрическая стимуляция миндалины вызывает у животного эмоцию страха и оборонительные поведенческие реакции. Критической структурой для получения подобного эффекта у собак является центральное ядро (Fonberg E., 1986). Его электрическая стимуляция вызывает вегетативные и двигательные проявления страха. Аксоны нейронов центрального ядра после бифуркации достигают латерального гипоталамуса и центрального серого вещества. Гипоталамус выполняет функцию интеграции вегетативных, соматических и гуморальных механизмов. Электрическое раздражение малых участков гипоталамуса вызывает у животного различные типы поведенческих реакций (реакции страха, агрессии, бегства, пищевые, половые, терморегуляционные реакции). Присутствие соматического, вегетативного и гуморального компонентов в составе каждой поведенческой реакции достигается за счет того, что латеральный гипоталамус (ЛГ) — структура с плохо дифференцированными ядрами — имеет эфферентные связи с вегетативными и соматическими ядрами ствола и спинного мозга. Латеральный гипоталамус регулирует гуморальные процессы через медиальный гипоталамус (МГ) - структуру с хорошо дифференцированными ядрами, с которыми он имеет двусторонние связи. Именно МГ служит промежуточным звеном между нервной и эндокринной системами.
127
Специфический таламус
Разрушение вентрального серого вещества устраняет только «замирание», а разрушение дорзального — усиливает его
Разрушение коры не устраняет УР страха
Разрушение латерального гипоталамуса устраняет только вегетативные реакции УР страха
Центральное серое вещество
Дорзальное Вентральное
Латеральный гипоталамус
Активное оборонительное поведение (борьба, бегство)
Пассивное оборонительное поведение (замирание — freezing)
Рис. 28. Схема связей миндалины с другими структурами мозга, определяющая возникновение пассивного и активного оборонительного поведения.
Миндалина ответственна не только за безусловные, но и за условнорефлекторные реакции страха. Отмечено возрастание активности ее нейронов под влиянием сочетания условного сигнала с безусловным раздражением, вызывающим страх. При этом ее нейроны не реагировали на изолированное предъявление условного или безусловного стимула, а также на их случайное чередование. Удаление или разрушение миндалины устраняет ранее выработанные условные рефлексы страха и делает невозможным выработку новых.
Миндалина получает сигналы от всех сенсорных систем. Более сложные поступают от коры, более простые — от специфического таламуса, двухолмия (верхнего и нижнего). По кортикофугальным путям к ней также приходят сигналы от нижневисочной коры, где
128
находятся нейроны, избирательно реагирующие на лица определенных людей и на различные паттерны эмоциональной лицевой экспрессии. Все сенсорные сигналы разных модальностей и разного уровня сложности приходят в латеральное ядро миндалины. Оно является сенсорным интерфейсом по отношению к центральному ядру.
В основе формирования условного рефлекса страха лежат пластические изменения синапсов афферентного входа к латеральному ядру миндалины и синапсов на нейронах центрального ядра, запускающих вегетативные и двигательные реакции страха.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50