А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Фрайберг (Roland P.E., Friberg L., 1985) пришли к выводу, что в процессе мышления мозг активируется не
98
менее, чем во время волевых движений или сенсорных процессов, даже если они требуют больших усилий. Авторы исследовали паттерны метаболической активности во время мыслительной деятельности (в отсутствие сенсорной стимуляции и двигательных реакций). Они измеряли ЛМКТ у человека нетомографическим методом во время выполнения им трех различных мыслительных заданий: 1) молча вычитать по 3 из 50; 2) думать о каждом втором слове из 9 звучащих слов; 3) представлять путь от входной двери в доме испытуемого, изменяя направление воображаемого движения слева направо при каждом втором повороте. Они установили, что при выполнении всех трех мыслительных задач повышение ЛМКТ всегда возникало за пределами моторной коры и первичных сенсорных областей. Когда испытуемые зрительно представляли свой путь движения, ЛМКТ усиливался во вторичных и третичных ассоциативных зрительных полях. Кроме того, увеличение ЛМКТ наблюдалось также в верхних затылочных, задних нижневисочных и задних верхнетеменных отделах коры, которые относятся к системе воспроизведения из памяти зрительной и пространственной информации. Активация этих же областей возникала, когда испытуемый осматривался в знакомой обстановке и когда должен был различать формы зрительно предъявляемых эллипсов. Во время мысленного выполнения арифметических действий метаболическая активация возникала билатерально в области ангулярной извилины, которую связывают с системой воспроизведения из памяти чисел и результатов вычитания (Roland P.E., Friberg L., 1985). Актуализация ассоциаций, связанных со звучащим словом, повышала ЛМКТ в правой сред-невисочной коре (в промежуточной слуховой ассоциативной области). Эта активация никогда не наблюдалась при выполнении двух других мыслительных задач. Попытка выявить паттерны активации, обеспечивающие выполнение когнитивных операций, направленных на взаимодействие с памятью, привела П. Роланда к следующему выводу. При извлечении из памяти образов (зрительных) используются те же области, что и при их восприятии, это главным образом вторичные и третичные ассоциативные зоны. При актуализации эпизодической памяти активируются нижние латеральные области височной коры, которые не реагируют при решении задач на семантическую память. Работа с семантической информацией специфически активировала левую нижнетеменную область, которая в задачах, требующих актуализации эпизодической памяти, была пассивной.
Глава 6 ПАМЯТЬ И НАУЧЕНИЕ
6.1. ВИДЫ ПАМЯТИ
6.1.1. Филогенетические уровни биологической памяти
Биологическая память— это фундаментальное свойство живой материи приобретать, сохранять и воспроизводить информацию.
Различают три вида биологической памяти, появление которых связано с разными этапами эволюционного процесса: генетическую, иммунологическую и нейрологическую (нервную) память. Чтобы жить, органическая система должна постоянно себя воспроизводить, иначе говоря, помнить свое строение и функции. Память о структурно-функциональной организации живой системы как представителя определенного биологического вида получила название генетической. Носителями генетической памяти являются нуклеиновые кислоты (ДНК, РНК).
С генетической памятью тесно связана иммунологическая память. В эволюции она возникает позже генетической и проявляется в способности иммунной системы усиливать защитную реакцию организма на повторное проникновение в него генетически инородных тел (вирусов, бактерий и др.). Все чужеродные вещества, вторгшиеся в организм, независимо от их разновидности принято называть антигенами. Иммунные белки, способные разрушать чужеродные тела, получили название антител.
Иммунный ответ осуществляется двумя системами. Первая — система Т-лимфоцитов — обеспечивает клеточную защиту — разрушение чужеродных клеток с помощью специфических клонов лимфоцитов, т.е. являющихся потомками одной клетки-предшественника, посредством их прямого контакта с чужеродными телами. Центральным органом Т-системы является вилочковая железа (Т-тимус), которая вырабатывает различные популяции Т-лимфоцитов (Т-киллеры, Т-хелперы, Т-клеточные рецепторы и др., распознающие антигены). Вторая — система В-лимфоцитов, относящаяся к костному мозгу; она обеспечивает гуморальную защиту, продуцирует В-лимфоциты и их потомки — плазмоциты. Последние вырабатывают различные классы иммуноглобулинов в качестве антител, встроенных в их мембрану.
Обе системы обеспечивают распознавание и уничтожение генетически чужеродных тел или веществ. Т-лимфоциты-киллеры несут на своей мембране антителоподобные рецепторы, которые 100
специфически распознают антиген, находящийся на мембране чужеродных клеток, и обеспечивают прикрепление киллера к клетке-мишени. После ее прикрепления киллеры выделяют в просвет между киллером и мишенью особый белок, «продырявливающий» мембрану клетки-мишени. В результате чужеродная клетка погибает. После этого они открепляются от мишени и переходят на другую клетку, и так несколько раз. Механизм действия В-лимфоцитов иной. Сами их антитела безвредны для клеток, несущих антиген. Они не обладают физиологической активностью, ведущей к разрушению антигена. При встрече с антигенами к антителам подключается специальный механизм (система комплемента), который активирует комплекс антиген—антитело. В результате резко усиливается эффект действия антител и комплекс антиген—антитело приобретает способность «продырявливать» клеточную мембрану, вызывать воспаление и тем самым убивать чужеродные клетки.
Важную функцию выполняют Т-хелперы (помощники). Лимфоциты-помощники сами не способны ни вырабатывать антитела, как это делают В-лимфоциты, ни убивать клетки-мишени, как Т-лимфоциты-киллеры. Но распознавая чужеродный антиген, они реагируют на него выработкой ростовых и дифференцировочных факторов, которые необходимы для размножения и созревания лимфоцитов, образующих антитела, и лимфоцитов-киллеров. Синдром приобретенного иммунодефицита — СПИД — вызывается вирусом, который поражает именно лимфоциты-помощники, что делает иммунную систему не способной ни к выработке антител, ни к образованию киллеров.
Согласно клонально-селекционной теории иммунитета австралийского исследователя — лауреата Нобелевской премии Ф.М. Беркета, сформулированной им в 1957 г., которая позже получила полное экспериментальное подтверждение, активированный антигеном лимфоцит вступает в процесс деления и диффе-ренцировки и образует клетки, секретирующие антитела. В результате из одной клетки возникает 500—1000 генетически идентичных клеток (клон), синтезирующих один и тот же тип антител, способных специфически распознавать антиген и соединяться с ним. Клоны лимфоцитов-потомков состоят не только из эффекторных клеток — плазматических клеток, секретирующих антитела, но и из многочисленных клеток памяти. Последние при повторяющемся воздействии тем же антигеном способны превращаться в клетки-потомки обоих типов: эффекторные и клетки памяти. Продолжительность жизни эффекторных клеток измеряется днями, а клетки памяти в популяции лимфоцитов могут сохраняться
101
десятилетиями. При повторной встрече с тем же антигеном распознающие его клетки памяти начинают быстрее и в большем количестве создавать эффекторные клетки, продуцирующие специфические антитела. Параллельно увеличивается производство и эффекторных Т-клеток (киллеров).
Таким образом, за время онтогенеза популяция лимфоцитов эволюционирует, создавая у взрослого организма индивидуальный иммунный набор/'В этом и проявляется иммунологическая память, которая, используя механизмы генетической памяти, обеспечивает более гибкое приспособление организма к микроразнообразию внешней среды (Вартанян Г.А., Лохов М.И., 1987).
Неврологическая, или нервная, память появляется у животных, обладающих нервной системой. Ее можно определить как совокупность сложных процессов, обеспечивающих формирование адаптивного поведения организма (субъекта). Неврологическая память использует не только собственные специфические механизмы, обеспечивающие индивидуальную адаптацию организма, но и механизмы более древней генетической памяти, способствующей выживанию бирлогического вида. Поэтому в неврологической памяти выделяют' генотипическую, или врожденную, память. Именно она у высших животных обеспечивает становление безусловных рефлексов, им-принтинга, различных форм врожденного поведения (инстинктов), играющих роль в приспособлении и выживаемости вида. Феноти-пическая память составляет основу адаптивного, индивидуального поведения, формируемого в результате научения. Ее механизмы обеспечивают хранение и извлечение информации, приобретаемой в течение жизни, в процессе индивидуального развития.
6.1.2. Временная организация памяти
Изменение следа памяти— энграммы во времени побудило исследователей ввести временной критерий для различения видов памяти. С позиции сторонников, подчеркивающих роль временного фактора в становлении энграммы, в ее жизни существует несколько этапов. Они последовательно переходят друг в друга и различаются механизмами запечатления энграммы, степенью ее устойчивости, объемом одновременно сохраняемой информации.
Наиболее популярна концепция временной организации памяти, принадлежащая канадскому психологу Д. Хеббу (D. Hebb), который выделил два хранилища памяти: кратковременное и долговременное. Кратковременная память (КП) представляет первый этап формирования энграммы. Ее существование во времени ограниче-102
но, след в КП лабилен, неустойчив, так как испытывает сильную интерференцию со стороны самых различных амнестических факторов — электрошока, травмы головы и др. Объем информации, одновременно сохраняемой в КП, ограничен. Поэтому более поздние следы вытесняют более ранние.
В качестве механизма КП большинство ученых рассматривают многократное циркулирование импульсов (реверберацию) по замкнутой цепочке нейронов. Вместе с тем многие физиологи и молекулярные биологи видят основу КП и в некоторых изменениях клеточной мембраны. Долговременная память (ДП) — второй этап формирования следа памяти, который переводит его в устойчивое состояние. Процесс перехода из КП в ДП называют процессом консолидации памяти. Согласно концепции временной организации памяти след памяти, прошедший консолидацию и попавший на хранение в ДП, не подвергается разрушающему действию амнестических агентов, которые обычно стирают КП. Энграмма в ДП в отличие от следа КП устойчива, время ее хранения не ограничено, так же как и объем информации, сохраняемой в ДП. В качестве механизма ДП рассматривают устойчивые изменения нейронов на клеточном, молекулярном и синаптическом уровнях.
Сравнивая функции кратковременной и долговременной памяти, можно сказать, что в кратковременной памяти мы «живем», а в долговременной памяти храним знания, придающие смысл, значение нашему непосредственному существованию. Обращение к прошлому опыту, который необходим, чтобы понять настоящее, — это функция долговременной памяти.
Некоторые исследователи, анализируя временную организацию памяти, не ограничиваются разделением ее на кратковременную и долговременную фазы. Из состава КП выделяют в самостоятельную форму эхоическую, ^коническую или так называемую сенсорную иомя7иь~с~бол"её коротким периодом удержанйя'йнформации в виде сенсорных следов, оставленных только что действующим стимулом. Емкость иконического хранения — около 9 элементов при удержании следа от зрительного стимула 250 мс. Эхоическое хранилище удерживает след звукового стимула около 12 с (Солсо Л.Р., 1996). Сенсорное хранилище выполняет важную функцию, так как дает возможность отбирать из него для дальнейшей обработки и сохранения только существенную информацию.
Сама идея о двойственном строении памяти родилась в конце XIX в., когда Уильям Джеймс в своей книге «Принципы психологии» (Principles of Psychology) разделил память на первичную и вторичную. Он исходил из опыта самонаблюдения о том, что одни вещи запоминаются на короткое время, другие — надолго. Его пер-
103
вичная (или преходящая) память во многом сходна с тем, что сегодня принято называть КП, и никогда не покидает сознания. Вторичную, или постоянную, память он представлял темным хранилищем информации, для извлечения которой требуется прикладывать усилия. Различие между первичной и вторичной памятью, введенное Уильямом Джеймсом, стало предвестником современных теорий двойственной памяти.
Основные экспериментальные факты и клинические наблюдения, подтверждающие двойственную природу памяти, — разделение ее на кратковременную и долговременную, связаны с явлением ретроградной амнезии. Ретроградная амнезия^ состоит в выпадении памяти на события, предшествующие действию амне-стического агента (электрошоку, травме головного мозга, введению фармакологических препаратов и др.). Люди, стадающие амнезией, вызванной травмой головного мозга, обычно не могут вспомнить события, непосредственно ей предшествующие, тогда как воспоминания о событиях более ранних у них сохраняются.
Результаты опытов с животными по научению также ухудшаются, если сразу за ним следует электроконвульсивный ток. Учитывая эти факты, а также данные клинических наблюдений, Л. Вейскранц (L. Weiskrantz) — нейропсихолог из Оксфордского университета (Великобритания) — предположил, что электрошок вызывает амнезию за счет нарушения процессов перевода информации из кратковременной (переходной) памяти в постоянную, т.е. процесса консолидации. След памяти под влиянием амнестического агента разрушается, если он до этого не успел консолидироваться или консолидировался частично, и эти разрушения необратимы. Процесс консолидации начинается на стадии КП и продолжается в долговременной памяти. Чем больше интервал времени от момента завершения обучения до момента предъявления амнестического агента, тем слабее его разрушающее действие на память.
Считают, что вывод о нарушении процесса консолидации как причине амнезии подкрепляется и тем фактом, что сразу после травмы (через 30 с) человек еще помнит все события, ей предшествующие, но если его опросить через 3—5 или 5—20 мин, пострадавший уже не может вспомнить все обстоятельства происшествия. У такого пациента с ретроградной амнезией, который демонстрирует неповрежденную КП, процесс консолидации протекает с нарушениями, поэтому следы в ДП формируются с трудом.
1 Помимо ретроградной амнезии, существует антероградная в виде нарушения памяти на события, произошедшие после воздействия амнестического агента.
104
Однако появившиеся новые факты потребовали уточнения структуры временной организации памяти. В качестве основного метода при изучении памяти обычно используют искусственное воздействие на один из этапов становления энграммы, результаты которого тестируются по времени возникновения ретроградной амнезии после обучения. Р. Марк (Mark R., 1979), а также М. Гиббс и К. Нг (Gibbs M., Ng К., 1980) расширили арсенал применяемых амнестических агентов. Они стали воздействовать на метаболические процессы в мозге с помощью внутримозгового введения различных фармакологических веществ, ингибиторов синтеза белков. В результате было установлено, что ретроградная амнезия может развиваться через разное время после обучения и что момент ее появления зависит от того, какой фармакологический препарат был использован. Это позволило им наряду с признанием КП и ДП выделить промежуточную (лабильную) память, метаболические процессы которой отличны от соответствующих процессов в КП и ДП.
Обобщая результаты своих исследований по выработке у цыплят зрительной дифференцировки между зернами и галькой того же размера, Р. Марк (Mark R., 1979) пришел к следующему выводу о времени сохранения следа в каждом хранилище памяти. След в КП угасает уже через 10 мин после обучения. В промежуточной памяти он хранится до 30 мин. В долговременную память энграмма попадает через 45 мин и хранится неопределенно долго. Для каждой из выделенных систем памяти существуют химически различные ингибиторы синтеза белков, специфически блокирующие разные стадии формирования следа памяти.
Однако сегодня изучение взаимоотношений биохимических процессов, развивающихся при обучении, с динамикой формирования следа памяти позволяет утверждать, что количество фаз фиксации энграммы зависит и определяется специфичностью применяемых амнестических воздействий (Греченко Т.Н., 1997).
6.1.3. Концепция активной памяти
Концепция временной организации памяти, оперирующая понятиями «кратковременная», «долговременная память» и «консолидация», в настоящее время подвергается серьезной критике.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50