А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 


Повторяя подобную операцию со всеми парами собственных функций, получаем систему элементов, одни из которых относятся к одному стационарному состоянию, другие – к двум стационарным состояниям, т е. к переходам. Эти элементы располагают в таблицу, причем элементы первого типа помещают на диагонали (диагональные элементы). Каждой механической величине сопоставляется, таким образом, матрица. Вопрос теперь заключается лишь в том, можно ли отождествить эти матрицы и матрицы квантовой механики.
Ответ на этот вопрос утвердительный. Шредингер прежде всего показал, что матрицы, построенные только что описанным способом, должны удовлетворять, как и матрицы Гейзенберга, правилам сложения и перемножения алгебраических матриц. Кроме того, несколько странный путь, которым постоянная Планка проникла в квантовую механику, получил в концепции Шредингера немедленное объяснение. Произведение двух операторов, вообще говоря, не коммутирует: полученный результат зависит от порядка сомножителей.
Тем не менее во многих случаях два оператора, соответствующих механическим величинам, коммутируют. Однако имеется исключение, когда этими величинами являются координата и сопряженная компонента импульса, ибо оператор, отвечающий последнему, пропорционален производной по сопряженной координате, а операция «производная по некоторой переменной» не коммутирует, как легко видеть, с операцией умножение на эту переменную.
Отсюда немедленно следуют сформулированные Гейзенбергом правила перестановки. Чтобы завершить отождествление рассматриваемых матриц, остается лишь показать, что матрицы волновой механики подчиняются каноническим уравнениям квантовой механики. Вот как это было сделано: Шредингер показал, что из канонических уравнений строго следует, что волновые функции, использованные при конструировании матриц, обязательно удовлетворяют волновым уравнениям волновой механики. Короче говоря, канонические уравнения квантовой механики эквивалентны волновым уравнениям волновой механики.
Таким образом, оказалось, что обе формы новой механики сводятся одна к другой. Теперь больше не вызывает удивления тот факт, что они приводят в проблеме квантования к одинаковым результатам. Метод квантовой механики, оперирующий прямо с матрицами и не имеющий дела с промежуточными величинами – волновыми функциями, более компактен и часто быстрее приводит к желаемым результатам. Метод же волновой механики лучше удовлетворяет интуиции физиков и лучше согласуется с образом их мыслей. Поэтому на первый взгляд он кажется более естественным и удобным для работы. Действительно, большинство физиков пользуется волновым методом и при расчетах явно использует волновые функции.

4. Принцип соответствия в новой механике

Новая механика позволяет придать гораздо более точную форму принципу соответствия и частично устранить поводы для критики, которой он подвергался в рамках старой квантовой теории. Мы уже видели, как Бор пытался использовать разложение в ряд Фурье электрического момента, соответствующего в классической модели начальному или конечному состоянию квантового перехода, чтобы предсказать поляризацию и интенсивность излучения при этом переходе. В случае больших квантовых чисел этот метод вполне удовлетворителен и свободен от всяких неопределенностей.
Однако в случае средних и малых квантовых чисел, практически наиболее важном, возникают трудности и двусмысленности. Наоборот, в новой механике сразу получается весьма ясный способ применения принципа соответствия. Действительно, в матрице, отвечающей компоненте электрического момента, каждый переход описывается одним и только одним элементом. Рассматривая матричный элемент, соответствующий определенному переходу, как амплитуду данной компоненты дипольного момента для данного перехода, можно, пользуясь формулой, аналогичной классической формуле, дать необычайно точное и недвусмысленное предсказание характера излучения при данном переходе. Конечно, в этом способе остается недоказанным, насколько законно применять для расчета указанных интенсивностей формулы классического типа. Однако это утверждение – один из наиболее существенных постулатов метода соответствия. Если принять эту гипотезу, то больше не останется никакого произвола и нестрогости в применении принципа соответствия.
В такой строгой форме принцип соответствия был установлен Гейзенбергом при создании матричной механики. На язык волновой механики его «перевел» Шредингер. Эти выдающиеся физики даже предложили одно наглядное объяснение роли матричных элементов в расчете излучения. Электрон в атоме нельзя больше считать локализованным в каждый момент времени. Есть лишь определенная вероятность найти его в той или иной точке, вероятность, пропорциональная согласно принципу интерференции квадрату модуля волновой функции. Это позволяет нам считать электрон как бы размазанным внутри атома, а его электрический заряд – в среднем распределенным непрерывным образом. Согласно Шредингеру, можно было бы применить принцип соответствия, сказав, что все происходит таким образом, как будто электрическая система (изменяющаяся во времени) излучает в соответствии с классическими законами. На первый взгляд такая точка зрения кажется вполне удовлетворительной, ибо она позволяет нам вновь» получить боровский закон частот. Однако, изучив ее внимательнее, мы видим, что на этом пути возникают серьезные трудности, и от него приходится отказаться. В действительности процесс излучения при квантовых переходах является по своей сущности настолько дискретным, что его нельзя строго представить себе как излучение некоторым, пусть фиктивным, распределением электричества, происходящим по классическим законам. Единственная поистине корректная интерпретация роли матричных элементов заключается в том, что согласно идеям, установленным в связи с принципом соответствия, матричные элементы позволяют вычислить вероятность того, что некоторое состояние претерпевает в единицу времени определенный квантовый переход.
Принцип соответствия новой механики позволяет вычислить интенсивность и поляризацию спектральных линий и, что особенно важно, вновь получить правила отбора. 0:1 позволяет также решить огромное число задач, касающихся взаимодействия вещества и излучения, среди которых я укажу лишь на задачу рассеяния света и дисперсии. Теперь можно строго получить формулу Крамерса – Гейзенберга, выведенную ранее с помощью приближенных соображений соответствия.
Применение метода соответствия к изучению взаимодействия вещества и излучения дало вполне удовлетворительные результаты и определенно содержит большую долю истины. Тем не менее нельзя не заметить, что, систематически применяя формулы электродинамики, записанные соответствующим образом, постоянно упускают из виду корпускулярную природу света. Действительно, рассеяние света атомом можно было бы рассматривать как задачу о соударении фотона с атомом, рассмотренную методами волновой механики. Чтобы успешно решить поставленный вопрос с этой точки зрения, необходимо попытаться ввести понятие о фотонах в электромагнитные колебания, иными словами, проквантовать электромагнитное поле.


Глава X. Вероятностная интерпретация новой механики

1. Общие идеи и основные принципы

Понятие вероятности играло важную роль в первых физических трактовках волновой механики. Чувствовалось, что возникла общая теория, в которой все законы новой механики имеют вероятностный характер. К этой теории, внешне очень новой и отвергающей многие классические идеи, постепенно приковывалось внимание всех физиков. Можно сказать, что сегодня ее приняли все, даже те, кто поверил в нее временно, и не оставляют надежды в один прекрасный день возвратиться к классическим представлениям.
Начнем с внешне почти банальной идеи о том, что для точного знания какой-либо физической величины нужно ее измерить. А для ее измерения всегда нужен некий прибор, который как-то воздействует на эту величину, в результате чего она становится известной с такой-то степенью точности. В классической физике a priori предполагалось, что, приняв соответствующие меры предосторожности, всегда можно так провести эти измерения, чтобы существенно не нарушить состояния, которое было до измерения. При этих условиях процесс измерения лишь устанавливает существование некоторого состояния, не внося ничего нового.
В макроскопических масштабах этот постулат, неявно допускаемый классической физикой, правилен. В этой области способный экспериментатор всегда может количественно исследовать явление, не внося значительных искажений. Это следует из того, что возмущения, которые возникают в процессе измерения, можно всегда уменьшить настолько, чтобы сделать их пренебрежимо малыми по сравнению с измеряемыми величинами. Напротив, когда мы имеем дело с микроскопическими величинами, из существования кванта действия следует, что возмущения, возникающие в процессе измерения, бесконечно уменьшать нельзя. Поэтому каждое измерение существенно искажает исследуемое явление.
Эти идеи будут отчетливо сформулированы несколько ниже, когда мы будем приводить примеры в пользу соотношений неопределенности, данные в основном Бором и Гейзенбергом. Пока же достаточно заметить, что ниоткуда не следует, что операция измерения является простым и хорошим способом получения сведений о существовавшем до этого измерения состоянии. Вполне возможно, что операция измерения сама участвует в создании нового состояния, извлекая из существовавшего до этого состояния одну из содержащихся в нем возможностей. А теперь попытаемся строго сформулировать роль измерений с новой точки зрения.
Для этой цели будет полезно вернуться к некоторым классическим экспериментам физической оптики. Снова, как и раньше, начав с дуализма фотонов и световых волн, мы будем иметь больше возможностей разобраться в этом вопросе. Представим себе вполне обычный эксперимент: спектральный анализ сложного луча света с помощью призмы (или дифракционной решетки). Прибор разделяет (как это было известно еще со времен Ньютона) различные монохроматические компоненты, содержащиеся в падающем пучке. В XIX в. много обсуждали вопрос о том, разделяет ли призма монохроматические компоненты, существовавшие в падающем пучке уже до этого, или они образуются под воздействием призмы. На этот вопрос не было дано сколько-нибудь удовлетворительного ответа. В конце концов наиболее осторожная позиция заключалась в следующем: монохроматические компоненты существуют в падающем свете виртуально, в некоем потенциальном состоянии. Это мнение подтверждается анализом квантовой природы света.
По существу мы попытаемся ввести в объяснение разложения света призмой идею фотонов. С этой точки зрения можно сказать, что призма разделяет фотоны на строго определенные цветовые группы: она выделяет из падающего пучка красные, желтые и синие фотоны. Но можно себе представить такой эксперимент, когда пучок настолько слаб, что фотоны попадают на призму поодиночке. Каждый фотон соответствует падающей волне, которая согласно предположению не монохроматическая. Поэтому падающему фотону нельзя приписать ни определенной частоты, ни согласно соотношению Эйнштейна определенной энергии. Падающий фотон обладает как бы несколькими возможными частотами, появляющимися в спектральном разложении соответствующей световой волны. Однако, пройдя сквозь призму, падающий фотон становится одним из фотонов монохроматических пучков, разделенных воздействием призмы. Теперь, следовательно, он обладает вполне определенной частотой.
Таким образом, призма оказывается инструментом, позволяющим измерить частоту (или энергию) фотонов: этот прибор как раз и извлекает из состояния, которое существовало до измерения, одну из содержащихся в нем возможностей. Теперь необходимо вычислить вероятность такого действия призмы на падающий фотон, чтобы он имел определенный цвет. Волновая теория немедленно дает количественный ответ на этот вопрос. Падающую волну можно представить в виде разложения Фурье, в котором каждая монохроматическая компонента обладает определенной амплитудой. Действие призмы заключается в разделении этих монохроматических компонент без изменения их амплитуды. Энергия же падающего на призму света на выходе разделяется между различными выходящими монохроматическими пучками пропорционально квадратам этих амплитуд, т е. интенсивностям различных компонент Фурье. Можно поэтому сказать: вероятность, что фотон, пройдя через призму, будет иметь определенную частоту, пропорциональна парциальной интенсивности, соответствующей этой частоте в разложении Фурье падающей световой волны. Это рассуждение, переведенное на язык волновой механики и соответствующим образом обобщенное, позволяет понять происхождение общей теории вероятностной трактовки квантовой механики.
Новая механика ставит в соответствие каждой механической величине некий оператор, который можно построить во всех случаях. Все операторы, о которых идет речь, относятся к классу линейных эрмитовских операторов. Математическая теория собственных значений позволяет поставить в соответствие этим операторам собственные значения и собственные функции. Поскольку эти операторы эрмитовские, собственные значения их будут действительными числами, образующими непрерывную, дискретную или смешанную последовательность, которая называется спектром этого оператора.
Собственные функции образуют, по крайней мере в общем случае, полный набор ортогональных функций, т е. какой бы ни была любая непрерывная функция, ее можно разложить в ряд по этим собственным функциям. С этими свойствами собственных функций и собственных значений мы уже встречались, когда говорили о собственных значениях и собственных функциях оператора Гамильтона в шредингеровском методе квантования. В этом методе предполагалось, что лишь некоторые, значения энергии квантованной системы являются собственными значениями оператора Гамильтона, который соответствует ее энергии. Обобщая эту идею, общая вероятностная теория волновой механики выдвигает следующий первый основной постулат, который можно назвать принципом квантования: точное измерение какой-либо механической величины может дать в качестве значения этой величины лишь одно из собственных значений соответствующего оператора.
В каждом случае этот постулат фиксирует возможные значения механической величины. Очевидно, его нужно дополнить вторым постулатом, говорящим о том, каковы вероятности измерения различных значений некоторых величин для частицы, начальное состояние которой до намерения известно, т е. какова вероятность получить возможные значения этих величин в результате измерения. В волновой механике начальное состояние частицы, известное до измерения, изображается определенной волновой функцией. Это и есть «КСИ»-волна, которая возмущается измерительным прибором. Аналогия с разложением спектра призмой подсказывает, каким должен быть второй постулат. Действительно, «КСИ»-волну можно разложить в ряд по собственным функциям, соответствующим измеряемой физической величине. Совершенно естественно предположить, что квадраты амплитуд компонент этого спектрального разложения служат мерой относительных вероятностей различных допустимых значений. Итак, можно сформулировать второй фундаментальный постулат, обобщенный принцип спектрального разложения: вероятности различных возможных значений некоторой механической величины, характеризующей частицу, волновая «КСИ»-функция которой известна, пропорциональны квадратам модуля амплитуд соответствующих компонент спектрального разложения «КСИ»-функции по собственным функциям рассматриваемой величины.
Совершенно очевидно, что метод спектрального разложения Борна, который применяется к квантованию специальной механической величины – энергии – есть частный случай этого второго принципа.
Гораздо менее очевидно, что уже упоминавшийся принцип интерференции – тоже частный случай этого принципа. Однако рассуждения, которые нельзя здесь приводить, показывают, что, применяя обобщенный принцип спектрального разложения к другой специальной механической величине – координате частицы, – мы получим принцип интерференции, Таким образом, оба принципа, которые мы ввели в одной из предыдущих глав для того, чтобы приступить к физической интерпретации волновой механики, оказываются частными случаями второго фундаментального постулата общей теории.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29