Равным же образом для объяснения целого ряда других явлений необходимо пользоваться понятием волны. Последовательное применение для описания явлений природы какого-либо одного из этих двух представлений, строго говоря, исключает применение другого. Однако в действительности при описании некоторых процессов используют оба понятия, и, несмотря на их противоречивый характер, нужно применять то или иное из них в зависимости от ситуации.
Так же обстоит дело с понятиями пространственно-временной локализации и вполне определенного динамического состояния: они так же дополнительны, как и понятия частицы и волны, с которыми к тому же, как мы скоро увидим, они тесно связаны. Можно спросить, почему же применение этих противоречащих друг другу представлений никогда не приводит к абсурду. Как мы уже говорили, это связано с тем, что невозможно одновременно определить все детали, которые позволяли бы полностью уточнить эти два представления. На математическом языке это выражается соотношением неопределенности Гейзенберга, которое в конечном счете есть следствие существования кванта действия. Так выступает со всей ясностью громадное значение открытия квантов в развитии современной теоретической физики.
С принципом дополнительности Бора тесно связан принцип ограниченности представлений. Такие простые образы, как частица, волна, точка, строго локализованная в пространстве, состояние вполне определенного движения, представляют собой, в сущности, некоторые абстракции, идеализации. В большинстве случаев эти идеализации приблизительно соответствуют действительному положению вещей, хотя и имеют определенные границы применимости. Применение каждой из этих идеализаций возможно лишь до тех пор, пока не окажется необходимым использование «дополнительной» идеализации. Таким образом, можно сказать, что частицы существуют, так как большое число физических явлений может быть объяснено только в том случае, если допустить их существование. Однако в других явлениях корпускулярная природа более или менее завуалирована и явно проявляется лишь волновой характер процесса.
Созданные нами более или менее схематичные идеализации способны отразить некоторые стороны различных явлений, но они все же ограничены и в их жесткие рамки не умещается все богатство реальности.
Мы не хотим затягивать этот предварительный обзор новых перспектив, позволивший нам в общих чертах рассмотреть развитие квантовой физики. У нас еще будет случай подробно остановиться на каждом из рассматриваемых вопросов, дополняя и углубляя его по мере изложения. Сказанного здесь уже достаточно, чтобы показать читателю, как глубока и интересна квантовая теория. Она не только вызвала к жизни отрасль науки – атомную физику – наиболее живую и увлекательную, но также бесспорно расширила наши представления о мире и привела к появлению многих новых идей, которые оставят, без сомнения, глубокий след в истории человеческой мысли. Именно поэтому квантовая физика представляет интерес не только для специалистов, она заслуживает внимания каждого культурного человека.
2. Классическая механика и физика – это всего лишь приближения
Теперь обсудим вкратце вопрос о том, какую роль современная физика отводит классической механике и физике. Разумеется, они полностью сохраняют свое практическое значение в той области явлений, для описания которой они были созданы и в которой их справедливость подтверждается опытом. Открытие квантов ни в коей мере не нарушает законов падения тел или законов геометрической оптики. Всякий раз, когда с определенной степенью точности подтверждается какой-либо закон (а всякий результат может быть проверен лишь с определенной точностью), можно утверждать, что этот результат в основном является окончательным и никакие последующие теории его не смогут опровергнуть. Если бы это было не так, то никакая наука вообще не могла бы развиваться. Однако может так случиться, что появление новых экспериментальных данных или новых теорий приведет к тому, что найденные ранее законы будут рассматриваться лишь как некоторое приближение. Иными словами, при увеличении точности измерений справедливость их в конце концов нарушается. Такие случаи неоднократно встречались в истории развития науки. Из законов геометрической оптики, например, известно, что закон прямолинейности распространения света, хотя он и был проверен с большой степенью точности и считался вначале совершенно точным, оказался верным лишь приближенно. Это стало ясным после открытия явления дифракции и установления волновой природы света. Именно таким путем последовательных приближений, устраняя внутренние противоречия, и может развиваться наука. Созданные в процессе ее развития теории не будут полностью опровергнуты и уничтожены последующим развитием науки, а войдут в качестве составных частей в новые, более общие теории. С этой точки зрения механику и классическую физику можно рассматривать как введение в квантовую физику.
Механика и классическая физика были созданы для описания явлений, протекающих в масштабе наших повседневных явлений. Они остаются справедливыми и для описания процессов, происходящих в еще больших астрономических масштабах. Но как только мы переходим к масштабам атома, существование квантов сразу ограничивает область применения механики и классической физики. С чем же это связано? А с тем, что величина кванта действия, характеризуемая знаменитой постоянной Планка, чрезвычайно мала по сравнению с нашими обычными единицами измерений. Возмущения, вносимые в измерения в результате существования квантов, оказываются в обычных условиях настолько малыми, что в используемых при этом единицах их практически невозможно заметить. Эти возмущения значительно меньше ошибок измерений, неизбежно возникающих в экспериментах, поставленных для проверки того или иного классического закона.
В свете квантовой теории классическая механика и физика уже не являются абсолютно точными. Однако в обычных условиях нарушение классических законов оказывается незаметным из-за имеющихся всегда ошибок измерений. Таким образом, для явлений, протекающих в наших обычных масштабах, классические механика и физика оказываются очень хорошим приближением.
Итак, здесь мы снова встречаемся с обычным процессом развития науки. Твердо установленные принципы, надежно проверенные законы, хотя и сохраняются в дальнейшем развитии науки, но уже рассматриваются не как абсолютно точные, а лишь как некоторое приближение, пределы применимости которого определяются новой, более общей теорией.
Поскольку все же для явлений нашего масштаба классическая механика и физика, совершенно не учитывающие наличия квантов, остаются справедливыми, то некоторые, возможно, скажут, что, в сущности, кванты не имеют такого уж всеобщего значения, какое им приписывается, поскольку в чрезвычайно широкой области явлений, включающей, в частности, область практических приложений, квантовую природу явлений можно совершенно не учитывать. Однако подобная точка зрения кажется нам неправильной. Во-первых, в такой важной и перспективной области как атомная и ядерная физика, кванты играют настолько существенную роль, что без привлечения квантовой теории понять явления, относящиеся к этой области, оказывается совершенно невозможно. Во-вторых, в макроскопической физике, где благодаря малости величины квантов и неизбежным ошибкам эксперимента квантовая природа процессов не проявляется явно, наличие кванта действия влечет за собой все те следствия, на которые мы указали ранее. И если они практически не оказывают заметного влияния, то это никоим образом не умаляет их значения, как для физики, так и для философии. Поэтому в настоящее время квантовая теория является одной из существенных основ естествознания.
Глава I. Классическая механика
1. Кинематика и динамика
В этой небольшой главе мы отнюдь не собираемся делать какого-либо, даже краткого, обзора принципов классической механики и, тем более, критически анализировать эту область физики. Для этого недостаточно было бы и целой книги; к тому же эти вопросы уже рассмотрены многими выдающимися учеными. Мы остановимся здесь лишь на некоторых вопросах, которые, на наш взгляд, представляют интерес в связи с излагаемым материалом.
Аналитическая механика состоит из двух разделов, носящих совершенно различный характер: кинематики и динамики, частным случаем которой является статика. Необходимо вкратце остановиться на этом разделении, поскольку оно основывается на предположениях, не оправдавших себя с точки зрения квантовой теории.
В самом деле, что же такое кинематика и почему ее изучают обычно прежде, чем динамику? Кинематика изучает движения тел, происходящие в трехмерном пространстве в течение какого-то времени и совершенно независимо от физических причин этого движения. На первый взгляд кажется вполне естественным предпослать изучению динамики изучение кинематики, ибо представляется совершенно логичным сначала изучить in abstracto различные виды движения в пространстве, а уж затем задаваться вопросом, по какой причине и следуя каким законам то или иное движение возникает в тех или иных условиях. Но этот кажущийся естественным путь в действительности покоится на одной гипотезе, в чем до последнего времени не отдавали себе ясного отчета даже наиболее выдающиеся умы. Действительно, математики, очевидно, вправе заниматься изучением перемещений в пространстве трех измерений в зависимости от параметра, который может быть идентифицирован со временем. Однако речь здесь идет о том, можно ли, как это без всякого анализа предполагалось, применять результаты этого абстрактного изучения к случаю реального движения физических объектов.
Классический переход от кинематики к динамике, по существу, содержит в себе гипотезу о том, что локализация физических объектов в некоторой абстрактной области трехмерного пространства и времени возможна вне зависимости от внутренних свойств самих физических объектов, например от их массы. Совершенно достоверно известно, что если оставаться в пределах нашего масштаба, то окружающие нас материальные тела с большой степенью точности могут считаться локализованными в пространстве и во времени. Именно это свойство тел и, в частности твердых, позволяет нам наглядно представить себе трехмерное пространство, в котором они перемещаются. Движение этих тел дает нам возможность точно определить время и способ его измерения. По этому оказывается вполне естественным, что методы аналитической механики с успехом применяют для изучения движения подобного рода материальных объектов. Однако распространение, без всяких оговорок, предположения о возможности локализации физических объектов в трехмерном пространстве и во времени на элементарные частицы материи, т е. на чрезвычайно легкие объекты, как это было сделано на заре развития атомной физики, – слишком смелая экстраполяция. В действительности, для этих элементарных объектов классические понятия пространства и времени не будут более справедливы, и мы сможем использовать их теперь лишь с ограничениями, которые и составляют наиболее своеобразные стороны квантовой теории. Ниже мы обсудим этот вопрос более подробно. Пока же нам достаточно указания, на какую гипотезу, заведомо справедливую только для объектов нашего масштаба, опирается метод изучения и описания движения материальных тел, вытекающий из классической механики.
2. Законы Ньютона и динамика материальной точки
Приняв за основу возможность локализации физических объектов в пространстве и во времени, классическая механика начинает изучение законов движения с наиболее простого случая: с изучения законов движения материальной точки, т е. физического объекта бесконечно малых размеров, обладающего конечной массой. Эта схематическая идея элементарной частицы, которую аналитическая механика предпосылает изложению законов динамики, полностью отвечает представлению о дискретности материи. И поэтому совершенно естественно, что полвека назад, когда физики пытались представить себе материю как совокупность находящихся в движении элементарных частиц, в динамике материальной точки они нашли как раз тот инструмент, который был необходим для их теоретических построений.
Динамика материальной точки исходит из принципа инерции, согласно которому материальная точка, на которую не действуют никакие внешние силы, сохраняет со временем свое состояние движения (или покоя). Это положение строго выполняется, во всяком случае тогда, когда речь идет о так называемых галилеевых системах координат, например системе, связанной с неподвижными звездами. Особая роль галилеевых систем координат следует из их определения. Если трехмерное пространство, в котором локализуются все физические объекты, понимать как пространство, имеющее некий абсолютный смысл, то под галилеевыми системами понимаются системы координат, движущиеся прямолинейно и равномерно относительно абсолютного пространства.
Согласно принципу инерции, свободная материальная точка движется прямолинейно и равномерно, либо в частном случае, когда ее скорость равна нулю, остается в состоянии покоя. Таким образом, вполне естественно предположить, что действие некоторой силы на материальную точку сводится просто к изменению ее скорости. Наиболее простой гипотезой будет предположение, что мгновенное изменение скорости материальной точки прямо пропорционально величине, действующей на нее силы, а коэффициент пропорциональности тем меньше, чем больше ее инерция, т е. чем сильнее она противодействует изменению ее скорости.
Естественно характеризовать материальную точку величиной коэффициента инерции – ее массой. При этом основной закон динамики материальной точки можно сформулировать следующим образом: ускорение, сообщаемое некоторой материальной точке, равно в каждый момент времени отношению силы, действующей на эту точку, к величине ее массы. Заметим, что в соответствии с методом, предполагающим, что изложение кинематики предшествует изложению динамики, масса, являющаяся в динамике характеристикой материальной точки, вводится a posteriori, тогда как существование определенных положения, траектории, скорости и ускорения точки допускается a priori.
Уравнения классической динамики материальной точки утверждают таким образом, что произведение массы материальной точки на какую-либо из компонент ее ускорения равно соответствующей компоненте силы, действующей на эту материальную точку. Если предположить, что сила есть известная функция координат и времени, то для определения координат материальной точки в зависимости от времени мы получаем систему трех обыкновенных дифференциальных уравнений второго порядка по времени.
Хорошо известная из математического анализа теорема утверждает, что решение этой системы уравнений однозначно определяется заданием координат и их первых производных по времени в какой-либо начальный момент времени. Иначе говоря, если известно положение материальной точки и ее скорость в некоторый момент времени, то можно точно определить характер ее движения во все последующие моменты времени.
Этот результат показывает, что классическая динамика материальной точки находится в полном соответствии с принципом физического детерминизма, принципом, согласно которому будущее состояние материального мира может быть полностью предсказано, если известны параметры, определяющие его состояние в какой-либо предшествующий момент времени.
Интересно отметить еще один факт. Поскольку предполагается, что материальная точка имеет бесконечно малые размеры, то ее траекторией будет линия, которая занимает в трехмерном пространстве лишь одномерный континуум. Материальная точка в каждой точке своей траектории находит определенное значение силы, которое и задает ее движение в последующий бесконечно малый промежуток времени. При этом, казалось бы, характер движения определяется лишь значением поля сил вдоль траектории и совершенно не зависит от его значений вне этой траектории. В действительности, однако, это не совсем так, и характер движения зависит также от поля сил в непосредственной близости от траектории. Последнее обстоятельство связано с тем, что, поскольку во всех физических задачах поле сил, как правило, меняется в пространстве непрерывно, значение силы в какой-либо точке траектории зависит, вообще говоря, от ее значений в области, непосредственно примыкающей к траектории. Особенно ясно это видно в часто встречающемся случае, когда сила в каждой точке пространства равна градиенту некоторой функции координат.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Так же обстоит дело с понятиями пространственно-временной локализации и вполне определенного динамического состояния: они так же дополнительны, как и понятия частицы и волны, с которыми к тому же, как мы скоро увидим, они тесно связаны. Можно спросить, почему же применение этих противоречащих друг другу представлений никогда не приводит к абсурду. Как мы уже говорили, это связано с тем, что невозможно одновременно определить все детали, которые позволяли бы полностью уточнить эти два представления. На математическом языке это выражается соотношением неопределенности Гейзенберга, которое в конечном счете есть следствие существования кванта действия. Так выступает со всей ясностью громадное значение открытия квантов в развитии современной теоретической физики.
С принципом дополнительности Бора тесно связан принцип ограниченности представлений. Такие простые образы, как частица, волна, точка, строго локализованная в пространстве, состояние вполне определенного движения, представляют собой, в сущности, некоторые абстракции, идеализации. В большинстве случаев эти идеализации приблизительно соответствуют действительному положению вещей, хотя и имеют определенные границы применимости. Применение каждой из этих идеализаций возможно лишь до тех пор, пока не окажется необходимым использование «дополнительной» идеализации. Таким образом, можно сказать, что частицы существуют, так как большое число физических явлений может быть объяснено только в том случае, если допустить их существование. Однако в других явлениях корпускулярная природа более или менее завуалирована и явно проявляется лишь волновой характер процесса.
Созданные нами более или менее схематичные идеализации способны отразить некоторые стороны различных явлений, но они все же ограничены и в их жесткие рамки не умещается все богатство реальности.
Мы не хотим затягивать этот предварительный обзор новых перспектив, позволивший нам в общих чертах рассмотреть развитие квантовой физики. У нас еще будет случай подробно остановиться на каждом из рассматриваемых вопросов, дополняя и углубляя его по мере изложения. Сказанного здесь уже достаточно, чтобы показать читателю, как глубока и интересна квантовая теория. Она не только вызвала к жизни отрасль науки – атомную физику – наиболее живую и увлекательную, но также бесспорно расширила наши представления о мире и привела к появлению многих новых идей, которые оставят, без сомнения, глубокий след в истории человеческой мысли. Именно поэтому квантовая физика представляет интерес не только для специалистов, она заслуживает внимания каждого культурного человека.
2. Классическая механика и физика – это всего лишь приближения
Теперь обсудим вкратце вопрос о том, какую роль современная физика отводит классической механике и физике. Разумеется, они полностью сохраняют свое практическое значение в той области явлений, для описания которой они были созданы и в которой их справедливость подтверждается опытом. Открытие квантов ни в коей мере не нарушает законов падения тел или законов геометрической оптики. Всякий раз, когда с определенной степенью точности подтверждается какой-либо закон (а всякий результат может быть проверен лишь с определенной точностью), можно утверждать, что этот результат в основном является окончательным и никакие последующие теории его не смогут опровергнуть. Если бы это было не так, то никакая наука вообще не могла бы развиваться. Однако может так случиться, что появление новых экспериментальных данных или новых теорий приведет к тому, что найденные ранее законы будут рассматриваться лишь как некоторое приближение. Иными словами, при увеличении точности измерений справедливость их в конце концов нарушается. Такие случаи неоднократно встречались в истории развития науки. Из законов геометрической оптики, например, известно, что закон прямолинейности распространения света, хотя он и был проверен с большой степенью точности и считался вначале совершенно точным, оказался верным лишь приближенно. Это стало ясным после открытия явления дифракции и установления волновой природы света. Именно таким путем последовательных приближений, устраняя внутренние противоречия, и может развиваться наука. Созданные в процессе ее развития теории не будут полностью опровергнуты и уничтожены последующим развитием науки, а войдут в качестве составных частей в новые, более общие теории. С этой точки зрения механику и классическую физику можно рассматривать как введение в квантовую физику.
Механика и классическая физика были созданы для описания явлений, протекающих в масштабе наших повседневных явлений. Они остаются справедливыми и для описания процессов, происходящих в еще больших астрономических масштабах. Но как только мы переходим к масштабам атома, существование квантов сразу ограничивает область применения механики и классической физики. С чем же это связано? А с тем, что величина кванта действия, характеризуемая знаменитой постоянной Планка, чрезвычайно мала по сравнению с нашими обычными единицами измерений. Возмущения, вносимые в измерения в результате существования квантов, оказываются в обычных условиях настолько малыми, что в используемых при этом единицах их практически невозможно заметить. Эти возмущения значительно меньше ошибок измерений, неизбежно возникающих в экспериментах, поставленных для проверки того или иного классического закона.
В свете квантовой теории классическая механика и физика уже не являются абсолютно точными. Однако в обычных условиях нарушение классических законов оказывается незаметным из-за имеющихся всегда ошибок измерений. Таким образом, для явлений, протекающих в наших обычных масштабах, классические механика и физика оказываются очень хорошим приближением.
Итак, здесь мы снова встречаемся с обычным процессом развития науки. Твердо установленные принципы, надежно проверенные законы, хотя и сохраняются в дальнейшем развитии науки, но уже рассматриваются не как абсолютно точные, а лишь как некоторое приближение, пределы применимости которого определяются новой, более общей теорией.
Поскольку все же для явлений нашего масштаба классическая механика и физика, совершенно не учитывающие наличия квантов, остаются справедливыми, то некоторые, возможно, скажут, что, в сущности, кванты не имеют такого уж всеобщего значения, какое им приписывается, поскольку в чрезвычайно широкой области явлений, включающей, в частности, область практических приложений, квантовую природу явлений можно совершенно не учитывать. Однако подобная точка зрения кажется нам неправильной. Во-первых, в такой важной и перспективной области как атомная и ядерная физика, кванты играют настолько существенную роль, что без привлечения квантовой теории понять явления, относящиеся к этой области, оказывается совершенно невозможно. Во-вторых, в макроскопической физике, где благодаря малости величины квантов и неизбежным ошибкам эксперимента квантовая природа процессов не проявляется явно, наличие кванта действия влечет за собой все те следствия, на которые мы указали ранее. И если они практически не оказывают заметного влияния, то это никоим образом не умаляет их значения, как для физики, так и для философии. Поэтому в настоящее время квантовая теория является одной из существенных основ естествознания.
Глава I. Классическая механика
1. Кинематика и динамика
В этой небольшой главе мы отнюдь не собираемся делать какого-либо, даже краткого, обзора принципов классической механики и, тем более, критически анализировать эту область физики. Для этого недостаточно было бы и целой книги; к тому же эти вопросы уже рассмотрены многими выдающимися учеными. Мы остановимся здесь лишь на некоторых вопросах, которые, на наш взгляд, представляют интерес в связи с излагаемым материалом.
Аналитическая механика состоит из двух разделов, носящих совершенно различный характер: кинематики и динамики, частным случаем которой является статика. Необходимо вкратце остановиться на этом разделении, поскольку оно основывается на предположениях, не оправдавших себя с точки зрения квантовой теории.
В самом деле, что же такое кинематика и почему ее изучают обычно прежде, чем динамику? Кинематика изучает движения тел, происходящие в трехмерном пространстве в течение какого-то времени и совершенно независимо от физических причин этого движения. На первый взгляд кажется вполне естественным предпослать изучению динамики изучение кинематики, ибо представляется совершенно логичным сначала изучить in abstracto различные виды движения в пространстве, а уж затем задаваться вопросом, по какой причине и следуя каким законам то или иное движение возникает в тех или иных условиях. Но этот кажущийся естественным путь в действительности покоится на одной гипотезе, в чем до последнего времени не отдавали себе ясного отчета даже наиболее выдающиеся умы. Действительно, математики, очевидно, вправе заниматься изучением перемещений в пространстве трех измерений в зависимости от параметра, который может быть идентифицирован со временем. Однако речь здесь идет о том, можно ли, как это без всякого анализа предполагалось, применять результаты этого абстрактного изучения к случаю реального движения физических объектов.
Классический переход от кинематики к динамике, по существу, содержит в себе гипотезу о том, что локализация физических объектов в некоторой абстрактной области трехмерного пространства и времени возможна вне зависимости от внутренних свойств самих физических объектов, например от их массы. Совершенно достоверно известно, что если оставаться в пределах нашего масштаба, то окружающие нас материальные тела с большой степенью точности могут считаться локализованными в пространстве и во времени. Именно это свойство тел и, в частности твердых, позволяет нам наглядно представить себе трехмерное пространство, в котором они перемещаются. Движение этих тел дает нам возможность точно определить время и способ его измерения. По этому оказывается вполне естественным, что методы аналитической механики с успехом применяют для изучения движения подобного рода материальных объектов. Однако распространение, без всяких оговорок, предположения о возможности локализации физических объектов в трехмерном пространстве и во времени на элементарные частицы материи, т е. на чрезвычайно легкие объекты, как это было сделано на заре развития атомной физики, – слишком смелая экстраполяция. В действительности, для этих элементарных объектов классические понятия пространства и времени не будут более справедливы, и мы сможем использовать их теперь лишь с ограничениями, которые и составляют наиболее своеобразные стороны квантовой теории. Ниже мы обсудим этот вопрос более подробно. Пока же нам достаточно указания, на какую гипотезу, заведомо справедливую только для объектов нашего масштаба, опирается метод изучения и описания движения материальных тел, вытекающий из классической механики.
2. Законы Ньютона и динамика материальной точки
Приняв за основу возможность локализации физических объектов в пространстве и во времени, классическая механика начинает изучение законов движения с наиболее простого случая: с изучения законов движения материальной точки, т е. физического объекта бесконечно малых размеров, обладающего конечной массой. Эта схематическая идея элементарной частицы, которую аналитическая механика предпосылает изложению законов динамики, полностью отвечает представлению о дискретности материи. И поэтому совершенно естественно, что полвека назад, когда физики пытались представить себе материю как совокупность находящихся в движении элементарных частиц, в динамике материальной точки они нашли как раз тот инструмент, который был необходим для их теоретических построений.
Динамика материальной точки исходит из принципа инерции, согласно которому материальная точка, на которую не действуют никакие внешние силы, сохраняет со временем свое состояние движения (или покоя). Это положение строго выполняется, во всяком случае тогда, когда речь идет о так называемых галилеевых системах координат, например системе, связанной с неподвижными звездами. Особая роль галилеевых систем координат следует из их определения. Если трехмерное пространство, в котором локализуются все физические объекты, понимать как пространство, имеющее некий абсолютный смысл, то под галилеевыми системами понимаются системы координат, движущиеся прямолинейно и равномерно относительно абсолютного пространства.
Согласно принципу инерции, свободная материальная точка движется прямолинейно и равномерно, либо в частном случае, когда ее скорость равна нулю, остается в состоянии покоя. Таким образом, вполне естественно предположить, что действие некоторой силы на материальную точку сводится просто к изменению ее скорости. Наиболее простой гипотезой будет предположение, что мгновенное изменение скорости материальной точки прямо пропорционально величине, действующей на нее силы, а коэффициент пропорциональности тем меньше, чем больше ее инерция, т е. чем сильнее она противодействует изменению ее скорости.
Естественно характеризовать материальную точку величиной коэффициента инерции – ее массой. При этом основной закон динамики материальной точки можно сформулировать следующим образом: ускорение, сообщаемое некоторой материальной точке, равно в каждый момент времени отношению силы, действующей на эту точку, к величине ее массы. Заметим, что в соответствии с методом, предполагающим, что изложение кинематики предшествует изложению динамики, масса, являющаяся в динамике характеристикой материальной точки, вводится a posteriori, тогда как существование определенных положения, траектории, скорости и ускорения точки допускается a priori.
Уравнения классической динамики материальной точки утверждают таким образом, что произведение массы материальной точки на какую-либо из компонент ее ускорения равно соответствующей компоненте силы, действующей на эту материальную точку. Если предположить, что сила есть известная функция координат и времени, то для определения координат материальной точки в зависимости от времени мы получаем систему трех обыкновенных дифференциальных уравнений второго порядка по времени.
Хорошо известная из математического анализа теорема утверждает, что решение этой системы уравнений однозначно определяется заданием координат и их первых производных по времени в какой-либо начальный момент времени. Иначе говоря, если известно положение материальной точки и ее скорость в некоторый момент времени, то можно точно определить характер ее движения во все последующие моменты времени.
Этот результат показывает, что классическая динамика материальной точки находится в полном соответствии с принципом физического детерминизма, принципом, согласно которому будущее состояние материального мира может быть полностью предсказано, если известны параметры, определяющие его состояние в какой-либо предшествующий момент времени.
Интересно отметить еще один факт. Поскольку предполагается, что материальная точка имеет бесконечно малые размеры, то ее траекторией будет линия, которая занимает в трехмерном пространстве лишь одномерный континуум. Материальная точка в каждой точке своей траектории находит определенное значение силы, которое и задает ее движение в последующий бесконечно малый промежуток времени. При этом, казалось бы, характер движения определяется лишь значением поля сил вдоль траектории и совершенно не зависит от его значений вне этой траектории. В действительности, однако, это не совсем так, и характер движения зависит также от поля сил в непосредственной близости от траектории. Последнее обстоятельство связано с тем, что, поскольку во всех физических задачах поле сил, как правило, меняется в пространстве непрерывно, значение силы в какой-либо точке траектории зависит, вообще говоря, от ее значений в области, непосредственно примыкающей к траектории. Особенно ясно это видно в часто встречающемся случае, когда сила в каждой точке пространства равна градиенту некоторой функции координат.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29