Старая часть города со своими узкими улицами, однообразными домами из красного песчаника сохранила средневековый вид. Собор С.-Этьенн (ХIII в.), црк. С.-Серпен в романском стиле (XI – XVl в, реставрирована Виоле-ле-Дюком в 1860 г., дл. 115 м., шир. 64 м. с башней 64 м. высоты), церк. св. Якова (XIV в.), црк. Дальбад в раннеготич. стиле. Црк. Ла-Дорад и Дю-Тор с фасадами на подобие крепостей: Ратуша (капитолий XIV – XVI в.) реставрирована 1880 г., бывший августинский монастырь, теперь музей; дворец судебн. учреждений (прежде парламент). Обелиск в память воинов, убитых в 1814 г. Жителей ок. 150 тыс. казенный артиллерийский и пороховой завод, казенная табачная фабрика. Заводы машиностроительные, каретные, гончарные, стеклянные, химические, писчебумажные. Производства мебельное, седельное, шляпное, консервное. Мукомольные мельницы. Оживленная торговля зерновым хлебом, мукой, вином, лесом, мрамором, шерстью, скотом, птицей и друг. Учебные заведения: факультеты юридический, медицинский и фармацевтический, философско-исторический, физико-математический и естественный (во всех факультетах около 1500 студентов), частный католический университет, лицей, ветеринарная школа, семинарии духовная и учительская, консерватория, художественно-ремесленное училище. Академия наук и академия «Jeux floraux». Публичная библиотека и музеи, обсерватория, ботанический сад. В древности Т. была главн. городом народа Volcae Tectosages и назывался Tolosa и уже во II в. до Р. Хр. Т. была значительным торговым городом. В священном, пруде были запрятаны 15 тыс. талантов золота, похищенных впоследствии проконсулом Цепионом и вошедших в поговорку под названием aurum tolosanum. Не смотря на частые завоевания и разорения, Т. еще в IV в. после Р. Хр. была цветущим городом. В 413 г. вестготы сделали Т. столицей своего государства. В 507 г. Т. занял франкский король Хлодвиг. В 631 г. Т. сделана резиденцией аквитанских герцогов; в половине IX в. – столицей Тулузского графства. В 1271 г. Т. присоединена к франц. короне. Людовик XIV даровал своему третьему сыну от Монтеспан Людовику-Александру де Бурбон титул графа Тулузского. Ср. Catel, «Histoire de comtes de Toulouse» (1623); «Toulouse. Histoire, archeologie monumentale, facultes, etc.» (Тулуза, 1887).
Близ Тулузы происходило последнее сражение 1814 г. главнокомандующий франц. южн. армией, маршал Сульт, не зная еще о низложении Наполеона, принимал в Т. все меры для противодействия англо-исп. армии Веллингтона. 10 апр. последовало кровопролитное сражение, в котором 80 тыс. французов, большею частью новобранцев, в течете 14 часов отражали атаки 100 тыс. англичан, испанцев и португальцев, вторгнувшихся в южную Францию. Часть жителей Т. приняла участие в обороне города. Сульт сохранил свои позиции, но убедился, что боя продолжать нельзя, а потому ночью очистил Т. и отступил в Нижн. Лангедок, потеряв ок. 3 тыс. чел. В войсках Веллингтона выбыло из строя до 13 тыс.
Туман
Туман. – Под названием Т. разумеется такое состояние нижнего слоя атмосферы, когда совершенно прозрачный при обыкновенных условиях воздух теряет свою прозрачность, делается мутным и предметы, даже находящиеся сравнительно близко от наблюдателя, становятся плохо видимыми. Состояние это вызывается в воздухе примесью к нему весьма мелких твердых или жидких частиц. В присутствии таковых световые лучи, задерживаемые и рассеиваемые встречаемыми на пути частицами, могут проникать только на сравнительно незначительные расстояния, – словом, при этих условиях лучи света распространяются в воздухе так, как они распространяются в искусственно получаемых мутных срединах. Сообразно своему происхождению, Т. распадаются на две группы: в первой стоят Т. сухие (помеха, мгла), обязанные своим происхождением вступлением дыма, копоти, пыли и т. п. в наблюдаемые слои воздуха; во второй группе стоять Т. в собственном смысле этого слова, – Т. влажные, происходящие от присутствия в воздухе мелких, твердых или жидких частиц воды. Нередко приходится, однако, наблюдать Т., составляющие переходную ступень от одной группы к другой, – Т., состоящие из водяных частиц вместе с достаточно большими массами пыли, дыма и копоти; это – так назыв. грязные, городские Т., являющиеся следствием присутствия в воздухе больших городов массы твердых частиц, выбрасываемых при топке дымовыми, а еще в большей степени – фабричными трубами. Наиболее простой случай представляют Т. первой группы, причиною которых являются дым лесных, торфяных или степных пожаров, или степная лессовая или песчаная пыль, поднимаемые и переносимые ветром иногда на значительные расстояния. Необходимо только отметить, что вообще сухой Т. не отличается таким гибельным действием на растительность, какое свойственно помохе. Эта последняя, связанная с сухими юго-вост. ветрами, их высокою температурою и большою сухостью и действует губительно на растения. Всякий раз, как только, вследствие охлаждения, температура воздуха перейдет через некоторую точку, при которой данное количество паров насыщает воздух, избыток паров должен выделиться непременно в виде жидких капелек. Правда, если для образования жидких капель нет достаточно благоприятных условий, водяные пары могут некоторое время оставаться в состоянии пересыщенном; но обыкновенно условия благоприятствуют выделению воды в виде капелек, так как мельчайшая пыль, поднимаемая ветром и необходимая для образования водяных капель по Айткэну, всегда в избытке находится в воздухе. Как только водяные капельки, образующиеся в воздухе при соответственных условиях, примешаются к нему в достаточных количествах и достигнут соответственных размеров, воздух на некотором расстоянии принимает типичную белесоватую окраску и предметы начинают терять в нем резкость очертаний: – появляется Т. При дальнейшем развитии явления оно может достигнуть значительной интенсивности, воздух приобретает молочно-белый оттенок и предметы, даже ярко освещенные, перестают быть видимыми на очень близких расстояниях. При исключительной силе Т. может быть так густ, что яркий газовый фонарь делается невидимым уже на расстоянии 2 – 3 саж. Что здесь все дело в примеси к воздуху очень мелких водяных капелек (в среднем диам. около 0, 02 мм.), поглощающих и рассеивающих световые лучи, видно из того, что воздух остается прозрачным даже при несравненно больших количествах воды, примешанных к воздуху в виде крупных капель дождя. Образование влажного Т. является всегда следствием того, что воздух, богатый водяными парами и близкий к насыщению, или подвергается охлаждению, или прямо смешивается с более холодными массами воздуха. Можно нередко наблюдать, что на почве, покрытой густою растительностью, – особенно после дождя, – к вечеру при тихой погоде появляется слой Т., расстилающийся плотною, белою пеленою над растительностью. Вечернее охлаждение почвы и травы вследствие лучеиспускания настолько понижает в этом случае температуру нижнего слоя воздуха, что этот последний, перейдя через точку насыщения, выделяет избыток своей влаги в виде капелек и образует слой Т. Подобные Т., стелющиеся густою белою пеленою по поверхности земли, – обычное явление на низких и болотистых местах, – особенно в осенние и летние вечера и ночи. Этой же причине обязаны своим происхождением мощные слои Т., сплошным слоем окутывающие земную поверхность при осенних антициклонах, наступающих вслед за теплою и мокрою погодою, в этих случаях может достигать мощности до нескольких десятков метров. Другой случай образования Т. Можно, также нередко наблюдать в зимнее время на берегах рек, озер, – вообще различных водоемов, покрытых ледяною корою; стоит на льду образоваться полынье, над ее отверстием в холодную погоду всегда наблюдается полоса Т., клубящегося над поверхностью воды. Причина понятна: вода при морозах всегда будет теплее окружающего льда и воздуха, к нему прикасающегося. Вследствие этого и воздух над водою, насыщаемый парами, из ее выделяющимися, будет несколько теплее окружающего. Смешиваясь с этим последним и охлаждаясь, теплый воздух переходит через температуру насыщения и выделяет избыток своих паров в виде Т. Этой же причине обязаны своим происхождением знаменитые ньюфаундлендские Т., в большом масштабе повторяющие предшествующий случай и являющиеся результатом смешивания теплого воздуха над Гольфстримом с массами холодного воздуха, держащегося над холодным Лабрадорским течением, бок о бок встречающимся здесь со струею Гольфстрима. Ньюфаундлендские Т. особенно интенсивны и часты в летние месяцы, когда господствующие ветры относят теплый и влажный воздух в сторону холодного течения и здесь заставляют его выделять водяные пары в капельножидком виде. Вообще всегда смешение теплых и холодных морских течений или холодные течения, омывающие берега теплых стран, являются причиною частых и упорных Т.; таковы, напр., сев. западный берег Африки (Марокко), берега юго-западной Африки, Перуанские берега Южноамериканского континента, берега Приморской области и Калифорнии и т. д. Существенную роль в образовании Т. играют мелкие частицы пыли, плавающие в воздухе и, по Айткэну, играющие роль ядер, на которых должно начаться образование водяных капелек. Чем больше в воздухе этой пыли, тем легче идет образование Т. Поэтому, именно, большой город с большим количеством отапливаемых зданий всегда почти окутан слабым Т., к которому городские жители уже настолько привыкают, что даже не замечают его, но который, однако, ясно виден приближающемуся к городу извне наблюдателю. Но, благодаря этому незаметному для городского жителя Т., всегда почти висящему над большим городом, воздух этого последнего гораздо легче поддается образованию и настоящего, уже заметного для наблюдателя Т. В этом отношении особенно интересны знаменитые лондонские Т. Обильный водяными парами воздух, вследствие массы копоти и дыма, выбрасываемых домами, фабриками, пароходами и жел. дорогами, которыми изобилует Лондон, обладает здесь необычайной способностью даже при небольших сравнительно понижениях температуры образовать необыкновенно густые и интенсивные Т. Из обычной, белой стадии Т., вследствие обилия копоти, нередко здесь переходит в бурый и даже так называемый черный Т., который может быть настолько густым, что затрудняет дыхание и вызывает кашель; при этой фазе Т. мрак настолько интенсивен, что все уличное движение громадного города по неволе прекращается. Интересны некоторые числа, показывающие, насколько загрязнен и обилен пылью, а вследствие этого и мало прозрачен воздух этого города. Так продолжительность солнечного сияния с ноября по февраль, выраженная числом часов, в течение которых солнце светило, была для Лондона и его предместий такова: Вобурн – 206, Кью – 172, Сити – 96, Гринвич – 150, Истбурн – 268, т. е. в самом городе солнце светит почти в три раза меньше часов, чем в его окрестностях. Насколько влияет увеличение фабричной деятельности на образование туманов, показывают следующие числа, заимствованные Ханном из работы Броди; по этому последнему автору, число дней с туманами в Лондоне по пятилетиям было в среднем за год: 1871 – 75 гг. 50, 8, 1876 – 80 гг. 58, 4, 1881 – 85 гг. 62, 2, 1886 – 90 гг. 74, 2, т. е. годовое число туманов в 20 лет возросло почти в 11/2, раза; при этом прирост по временам года распределился следующим образом: число туманов за 20 лет возросло в течение зимы на 13,8, весны 2,0, лета 0,2 и осени 7,2, т. е. главным образом возрастание числа туманов падает на зиму и осень, когда происходит усиленная топка печей. При этом особенно заметно на увеличение числа туманов влияет усиление топки каменным углем: по замечанию Саймонса, основанному на собственных наблюдениях, Париж, прежде совершенно свободный от густых, желтых Т., с переходом от дровяного отопления к каменноугольному приближается теперь в этом отношении к Лондону и густые, желтые Т. становятся в нем обычным явлением. Очень подробно литературу Т. можно найти в курсе метеорологии Наnn'a, «Lehrbuch der Meteorologie» (Лпц., 1901)" см. также Лачинов, «Основы метеорологии» (СПб., 1895).
Г. Любославский.
Туманности
Туманности. – Так называются видимые в достаточно сильные трубы, в различных местностях небесного свода, бесформенные скопления светящейся материи, похожие на легкие облачка или хлопья фосфоресцирующего тумана. Т. на первый взгляд легко смешать со слабыми телескопическими кометами, но Т. не изменяют своего положения среди соседних звезд, не имеют чувствительного параллакса – не принадлежат к солнечной системе, а одинаково далеки от нас как и звезды. К Т. близко подходят так назыв. звездные кучи; между этими типами светил нельзя даже провести резкой грани. Многие Т., имеющие вид в слабейшие трубы сплошной тускло светящейся массы (всего лучше их определить словом «светлый налет»), в более сильные трубы оказываются разложенными на отдельные яркие точки. Вместе с улучшением оптических средств все большее число Т. переходит в разряд разложимых. С другой стороны, спектральный анализ доказал, что многие Т. никогда не могут быть разложены, что они представляют собой действительно скопление материи в газообразном состоянии, и во всяком случай не состоят из отдельных твердых или жидких телец. Разнообразие видов Т. и звездных куч настолько велико, что если взять с одной стороны такую характерную кучу широко расставленных звезд как Плеяда, а с другой стороны бесформенные клубы космической материи как Т. в созвездии Ориона, то можно подобрать ряд небесных объектов, которые составят непрерывный и постепенный переход между такими различными типами светил. Лишь несколько самых ярких Т. видимы невооруженным глазом, и то, как светлые точки, едва отличимые для самого острого зрения от обыкновенных звезд. Обратно, некоторые широко раскинутые звездные кучи (а для очень близоруких людей даже Плеяды) могут служить образцом того, как представляются в трубе настоящие Т.
Названия nebula, nejelion употреблялись еще древними астрономами. Гиппарх называл так известное звездное скопление Praesepe в созвездии Рака. Птолемей по непонятной теперь причине обозначал «туманными» некоторые яркие звезды. Эти nejeloeideV считались астрологами опасными – они приносили слепоту. По-видимому, уже Al Sufi, арабский астроном Х в., знал о существовании Т. в созвездии Андромеды. На голландских картах (около 1500 г.) это место неба обозначено группой точек. Первое описание знаменитой Т. Андромеды дал Тобиас Майер в 1612 г. Затем, Цизат в Люцерне, наблюдая комету в 1618 г., заметил Т. в созвездии Ориона. Эту Т. подробно описал Гюйгенс в 1656 г. В 1716 г. Галлей знал еще только шесть Т., но каталог Мессье (1771) содержит 103 Т. Около того же времени 42 Т. южного неба занес на карту Лaкайль во время своего пребывания (1752) на мысе Доброй Надежды. Гигантской шаг вперед сделал В. Гершель. При своих многолетних «поисках» по всему небосводу он открыл до трех тысяч новых Т., иногда довольно значительных по величине и слабых, иногда еле отличимых от звезд. Гершель различал шесть классов: звездные кучи; разложимые Т.; Т. в тесном смысле слова (неправильные, правильные – овальный и кольцеобразные); планетарные Т.; звездные Т.; туманные звезды. Его первый «Catalogue of one Thousand new Nebulae and Clusters of Stars» появился в 1786 г. Затем (1789 – 1802) Гершель напечатал несколько добавочных каталогов. Сын его, Д. Гершель, продолжал ту же работу для южного полушария (1834 – 38). Общий каталог Т., изданный нм в 1864 г., заключал 5079 предметов. Поисками за новыми Т. занимались затем Дёнлоп, Росс, Лассель, Даррэ, Шмидт, в новейшее время Стефан, Бигурдан. В 1888 г. вышел «A New General Catalogue of nebulae and clusters of stars», обработанный Дрейером; он содержит 7840 предметов. Теперь принято обозначать Т. номерами этого каталога (в сокращении N. G. С.). Лорд Росс, пользуясь громадной оптической мощью своих рефлекторов, открыл чрезвычайно интересные детали многих Т. он установил новые, весьма обширный класс спиральных Т. и доказал, что многие так называемые овальные Т. не имеют правильной фигуры. В 1880 г. Дрэпер получил первый фотографический снимок Т. (в Орионе). Фотография дала возможность путем увеличения времени экспозиции (иногда туманности в течение нескольких ночей подряд) обнаруживать присутствие туманной материи там, где глаз даже в лучшие рефракторы ничего не может распознать. Обнаружены громадные, хотя крайне слабые Т. во многие десятки квадратных градусов. Описанная Гюйгенсом Т. в Орионе составляет ничтожную по площади часть всего скопления, занимающего своими разветвлениями половину созвездия. Фотография же открыла весьма сложные туманные полосы, окутывающие группу Плеяд. Из фотографических снимков Т. особенно известны работы Исаака Робертса и бр. Анри.
Среди различных тесных звездных куч, которые в слабые инструменты имеют вид Т., особенно интересны «шарообразные» скопления мельчайших звездочек равных между собою по яркости (12 – 15 величины).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
Близ Тулузы происходило последнее сражение 1814 г. главнокомандующий франц. южн. армией, маршал Сульт, не зная еще о низложении Наполеона, принимал в Т. все меры для противодействия англо-исп. армии Веллингтона. 10 апр. последовало кровопролитное сражение, в котором 80 тыс. французов, большею частью новобранцев, в течете 14 часов отражали атаки 100 тыс. англичан, испанцев и португальцев, вторгнувшихся в южную Францию. Часть жителей Т. приняла участие в обороне города. Сульт сохранил свои позиции, но убедился, что боя продолжать нельзя, а потому ночью очистил Т. и отступил в Нижн. Лангедок, потеряв ок. 3 тыс. чел. В войсках Веллингтона выбыло из строя до 13 тыс.
Туман
Туман. – Под названием Т. разумеется такое состояние нижнего слоя атмосферы, когда совершенно прозрачный при обыкновенных условиях воздух теряет свою прозрачность, делается мутным и предметы, даже находящиеся сравнительно близко от наблюдателя, становятся плохо видимыми. Состояние это вызывается в воздухе примесью к нему весьма мелких твердых или жидких частиц. В присутствии таковых световые лучи, задерживаемые и рассеиваемые встречаемыми на пути частицами, могут проникать только на сравнительно незначительные расстояния, – словом, при этих условиях лучи света распространяются в воздухе так, как они распространяются в искусственно получаемых мутных срединах. Сообразно своему происхождению, Т. распадаются на две группы: в первой стоят Т. сухие (помеха, мгла), обязанные своим происхождением вступлением дыма, копоти, пыли и т. п. в наблюдаемые слои воздуха; во второй группе стоять Т. в собственном смысле этого слова, – Т. влажные, происходящие от присутствия в воздухе мелких, твердых или жидких частиц воды. Нередко приходится, однако, наблюдать Т., составляющие переходную ступень от одной группы к другой, – Т., состоящие из водяных частиц вместе с достаточно большими массами пыли, дыма и копоти; это – так назыв. грязные, городские Т., являющиеся следствием присутствия в воздухе больших городов массы твердых частиц, выбрасываемых при топке дымовыми, а еще в большей степени – фабричными трубами. Наиболее простой случай представляют Т. первой группы, причиною которых являются дым лесных, торфяных или степных пожаров, или степная лессовая или песчаная пыль, поднимаемые и переносимые ветром иногда на значительные расстояния. Необходимо только отметить, что вообще сухой Т. не отличается таким гибельным действием на растительность, какое свойственно помохе. Эта последняя, связанная с сухими юго-вост. ветрами, их высокою температурою и большою сухостью и действует губительно на растения. Всякий раз, как только, вследствие охлаждения, температура воздуха перейдет через некоторую точку, при которой данное количество паров насыщает воздух, избыток паров должен выделиться непременно в виде жидких капелек. Правда, если для образования жидких капель нет достаточно благоприятных условий, водяные пары могут некоторое время оставаться в состоянии пересыщенном; но обыкновенно условия благоприятствуют выделению воды в виде капелек, так как мельчайшая пыль, поднимаемая ветром и необходимая для образования водяных капель по Айткэну, всегда в избытке находится в воздухе. Как только водяные капельки, образующиеся в воздухе при соответственных условиях, примешаются к нему в достаточных количествах и достигнут соответственных размеров, воздух на некотором расстоянии принимает типичную белесоватую окраску и предметы начинают терять в нем резкость очертаний: – появляется Т. При дальнейшем развитии явления оно может достигнуть значительной интенсивности, воздух приобретает молочно-белый оттенок и предметы, даже ярко освещенные, перестают быть видимыми на очень близких расстояниях. При исключительной силе Т. может быть так густ, что яркий газовый фонарь делается невидимым уже на расстоянии 2 – 3 саж. Что здесь все дело в примеси к воздуху очень мелких водяных капелек (в среднем диам. около 0, 02 мм.), поглощающих и рассеивающих световые лучи, видно из того, что воздух остается прозрачным даже при несравненно больших количествах воды, примешанных к воздуху в виде крупных капель дождя. Образование влажного Т. является всегда следствием того, что воздух, богатый водяными парами и близкий к насыщению, или подвергается охлаждению, или прямо смешивается с более холодными массами воздуха. Можно нередко наблюдать, что на почве, покрытой густою растительностью, – особенно после дождя, – к вечеру при тихой погоде появляется слой Т., расстилающийся плотною, белою пеленою над растительностью. Вечернее охлаждение почвы и травы вследствие лучеиспускания настолько понижает в этом случае температуру нижнего слоя воздуха, что этот последний, перейдя через точку насыщения, выделяет избыток своей влаги в виде капелек и образует слой Т. Подобные Т., стелющиеся густою белою пеленою по поверхности земли, – обычное явление на низких и болотистых местах, – особенно в осенние и летние вечера и ночи. Этой же причине обязаны своим происхождением мощные слои Т., сплошным слоем окутывающие земную поверхность при осенних антициклонах, наступающих вслед за теплою и мокрою погодою, в этих случаях может достигать мощности до нескольких десятков метров. Другой случай образования Т. Можно, также нередко наблюдать в зимнее время на берегах рек, озер, – вообще различных водоемов, покрытых ледяною корою; стоит на льду образоваться полынье, над ее отверстием в холодную погоду всегда наблюдается полоса Т., клубящегося над поверхностью воды. Причина понятна: вода при морозах всегда будет теплее окружающего льда и воздуха, к нему прикасающегося. Вследствие этого и воздух над водою, насыщаемый парами, из ее выделяющимися, будет несколько теплее окружающего. Смешиваясь с этим последним и охлаждаясь, теплый воздух переходит через температуру насыщения и выделяет избыток своих паров в виде Т. Этой же причине обязаны своим происхождением знаменитые ньюфаундлендские Т., в большом масштабе повторяющие предшествующий случай и являющиеся результатом смешивания теплого воздуха над Гольфстримом с массами холодного воздуха, держащегося над холодным Лабрадорским течением, бок о бок встречающимся здесь со струею Гольфстрима. Ньюфаундлендские Т. особенно интенсивны и часты в летние месяцы, когда господствующие ветры относят теплый и влажный воздух в сторону холодного течения и здесь заставляют его выделять водяные пары в капельножидком виде. Вообще всегда смешение теплых и холодных морских течений или холодные течения, омывающие берега теплых стран, являются причиною частых и упорных Т.; таковы, напр., сев. западный берег Африки (Марокко), берега юго-западной Африки, Перуанские берега Южноамериканского континента, берега Приморской области и Калифорнии и т. д. Существенную роль в образовании Т. играют мелкие частицы пыли, плавающие в воздухе и, по Айткэну, играющие роль ядер, на которых должно начаться образование водяных капелек. Чем больше в воздухе этой пыли, тем легче идет образование Т. Поэтому, именно, большой город с большим количеством отапливаемых зданий всегда почти окутан слабым Т., к которому городские жители уже настолько привыкают, что даже не замечают его, но который, однако, ясно виден приближающемуся к городу извне наблюдателю. Но, благодаря этому незаметному для городского жителя Т., всегда почти висящему над большим городом, воздух этого последнего гораздо легче поддается образованию и настоящего, уже заметного для наблюдателя Т. В этом отношении особенно интересны знаменитые лондонские Т. Обильный водяными парами воздух, вследствие массы копоти и дыма, выбрасываемых домами, фабриками, пароходами и жел. дорогами, которыми изобилует Лондон, обладает здесь необычайной способностью даже при небольших сравнительно понижениях температуры образовать необыкновенно густые и интенсивные Т. Из обычной, белой стадии Т., вследствие обилия копоти, нередко здесь переходит в бурый и даже так называемый черный Т., который может быть настолько густым, что затрудняет дыхание и вызывает кашель; при этой фазе Т. мрак настолько интенсивен, что все уличное движение громадного города по неволе прекращается. Интересны некоторые числа, показывающие, насколько загрязнен и обилен пылью, а вследствие этого и мало прозрачен воздух этого города. Так продолжительность солнечного сияния с ноября по февраль, выраженная числом часов, в течение которых солнце светило, была для Лондона и его предместий такова: Вобурн – 206, Кью – 172, Сити – 96, Гринвич – 150, Истбурн – 268, т. е. в самом городе солнце светит почти в три раза меньше часов, чем в его окрестностях. Насколько влияет увеличение фабричной деятельности на образование туманов, показывают следующие числа, заимствованные Ханном из работы Броди; по этому последнему автору, число дней с туманами в Лондоне по пятилетиям было в среднем за год: 1871 – 75 гг. 50, 8, 1876 – 80 гг. 58, 4, 1881 – 85 гг. 62, 2, 1886 – 90 гг. 74, 2, т. е. годовое число туманов в 20 лет возросло почти в 11/2, раза; при этом прирост по временам года распределился следующим образом: число туманов за 20 лет возросло в течение зимы на 13,8, весны 2,0, лета 0,2 и осени 7,2, т. е. главным образом возрастание числа туманов падает на зиму и осень, когда происходит усиленная топка печей. При этом особенно заметно на увеличение числа туманов влияет усиление топки каменным углем: по замечанию Саймонса, основанному на собственных наблюдениях, Париж, прежде совершенно свободный от густых, желтых Т., с переходом от дровяного отопления к каменноугольному приближается теперь в этом отношении к Лондону и густые, желтые Т. становятся в нем обычным явлением. Очень подробно литературу Т. можно найти в курсе метеорологии Наnn'a, «Lehrbuch der Meteorologie» (Лпц., 1901)" см. также Лачинов, «Основы метеорологии» (СПб., 1895).
Г. Любославский.
Туманности
Туманности. – Так называются видимые в достаточно сильные трубы, в различных местностях небесного свода, бесформенные скопления светящейся материи, похожие на легкие облачка или хлопья фосфоресцирующего тумана. Т. на первый взгляд легко смешать со слабыми телескопическими кометами, но Т. не изменяют своего положения среди соседних звезд, не имеют чувствительного параллакса – не принадлежат к солнечной системе, а одинаково далеки от нас как и звезды. К Т. близко подходят так назыв. звездные кучи; между этими типами светил нельзя даже провести резкой грани. Многие Т., имеющие вид в слабейшие трубы сплошной тускло светящейся массы (всего лучше их определить словом «светлый налет»), в более сильные трубы оказываются разложенными на отдельные яркие точки. Вместе с улучшением оптических средств все большее число Т. переходит в разряд разложимых. С другой стороны, спектральный анализ доказал, что многие Т. никогда не могут быть разложены, что они представляют собой действительно скопление материи в газообразном состоянии, и во всяком случай не состоят из отдельных твердых или жидких телец. Разнообразие видов Т. и звездных куч настолько велико, что если взять с одной стороны такую характерную кучу широко расставленных звезд как Плеяда, а с другой стороны бесформенные клубы космической материи как Т. в созвездии Ориона, то можно подобрать ряд небесных объектов, которые составят непрерывный и постепенный переход между такими различными типами светил. Лишь несколько самых ярких Т. видимы невооруженным глазом, и то, как светлые точки, едва отличимые для самого острого зрения от обыкновенных звезд. Обратно, некоторые широко раскинутые звездные кучи (а для очень близоруких людей даже Плеяды) могут служить образцом того, как представляются в трубе настоящие Т.
Названия nebula, nejelion употреблялись еще древними астрономами. Гиппарх называл так известное звездное скопление Praesepe в созвездии Рака. Птолемей по непонятной теперь причине обозначал «туманными» некоторые яркие звезды. Эти nejeloeideV считались астрологами опасными – они приносили слепоту. По-видимому, уже Al Sufi, арабский астроном Х в., знал о существовании Т. в созвездии Андромеды. На голландских картах (около 1500 г.) это место неба обозначено группой точек. Первое описание знаменитой Т. Андромеды дал Тобиас Майер в 1612 г. Затем, Цизат в Люцерне, наблюдая комету в 1618 г., заметил Т. в созвездии Ориона. Эту Т. подробно описал Гюйгенс в 1656 г. В 1716 г. Галлей знал еще только шесть Т., но каталог Мессье (1771) содержит 103 Т. Около того же времени 42 Т. южного неба занес на карту Лaкайль во время своего пребывания (1752) на мысе Доброй Надежды. Гигантской шаг вперед сделал В. Гершель. При своих многолетних «поисках» по всему небосводу он открыл до трех тысяч новых Т., иногда довольно значительных по величине и слабых, иногда еле отличимых от звезд. Гершель различал шесть классов: звездные кучи; разложимые Т.; Т. в тесном смысле слова (неправильные, правильные – овальный и кольцеобразные); планетарные Т.; звездные Т.; туманные звезды. Его первый «Catalogue of one Thousand new Nebulae and Clusters of Stars» появился в 1786 г. Затем (1789 – 1802) Гершель напечатал несколько добавочных каталогов. Сын его, Д. Гершель, продолжал ту же работу для южного полушария (1834 – 38). Общий каталог Т., изданный нм в 1864 г., заключал 5079 предметов. Поисками за новыми Т. занимались затем Дёнлоп, Росс, Лассель, Даррэ, Шмидт, в новейшее время Стефан, Бигурдан. В 1888 г. вышел «A New General Catalogue of nebulae and clusters of stars», обработанный Дрейером; он содержит 7840 предметов. Теперь принято обозначать Т. номерами этого каталога (в сокращении N. G. С.). Лорд Росс, пользуясь громадной оптической мощью своих рефлекторов, открыл чрезвычайно интересные детали многих Т. он установил новые, весьма обширный класс спиральных Т. и доказал, что многие так называемые овальные Т. не имеют правильной фигуры. В 1880 г. Дрэпер получил первый фотографический снимок Т. (в Орионе). Фотография дала возможность путем увеличения времени экспозиции (иногда туманности в течение нескольких ночей подряд) обнаруживать присутствие туманной материи там, где глаз даже в лучшие рефракторы ничего не может распознать. Обнаружены громадные, хотя крайне слабые Т. во многие десятки квадратных градусов. Описанная Гюйгенсом Т. в Орионе составляет ничтожную по площади часть всего скопления, занимающего своими разветвлениями половину созвездия. Фотография же открыла весьма сложные туманные полосы, окутывающие группу Плеяд. Из фотографических снимков Т. особенно известны работы Исаака Робертса и бр. Анри.
Среди различных тесных звездных куч, которые в слабые инструменты имеют вид Т., особенно интересны «шарообразные» скопления мельчайших звездочек равных между собою по яркости (12 – 15 величины).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118