Т. катания является вследствие взаимного вдавливания катящегося тела и того тела, по которому производится катание. Это сопротивление рассматривают как пару сил, противодействующую катанию и момент М этой пары полагают тоже пропорциональным давлению между катящимися друг по другу телами; так что, если давление есть Q, то M=nQ, где n есть некоторая длина. Длина эта при катании чугуна по чугуну равна 0,05 стм.
Д. Б.
Б) Т. жидкостей. Если слой жидкости движется по другому неподвижному жидкому слою, то между ними, вследствие взаимного притяжения частиц обоих слоев, обнаруживается трение, действие которого будет заключаться в том, что скорость текущего слоя уменьшается, а слой, остававшийся неподвижным, начнет двигаться в ту же сторону, что и другой. Если слой жидкости течет с некоторой скоростью v по другому, тоже двигающемуся со скоростью, большей или меньшей, чем v, направленной в одну сторону с первой, то движение одного слоя будет замедлено, а другое ускорено, как замедляющая сила, в другом как ускоряющая. Если один слой двигался по другому, который сам движется по направлению, противоположному первому, то результатом Т. было бы замедление обоих течений. Течение жидкости по поверхности твердого тела также сопровождается Т., но если это твердое тело вполне смачивается жидкостью, то весьма тонкий ее слой удерживается твердым телом и становится неподвижным, и поэтому жидкость, текущая по такому смоченному твердому телу, течет как бы по жидкости, и если такое твердое тело имеет форму трубки, то жидкость протекает как бы по жидкой трубке. Величина Т. пропорциональна поверхности жидкости, соприкасающейся с твердой стенкой, и скорости течения параллельно поверхности стенки; сверх того величина Т. какойлибо жидкости зависит от свойств твердого тела, по поверхности которого течет жидкость, не вполне смачивающая это тело. Таким образом, обозначая величину скорости течения по неподвижному слою буквой v, а величину поверхности через s, можно выразить замедляющее или ускоряющее действие Т. произведением kvs, где k есть так называемый коэффициент Т. (внешнего). Жидкость, текущую в цилиндрической трубке, можно мысленно разделить на произвольно большое число тонкостенных жидких цилиндров, имеющих одну общую ось, и движущихся один в другом. Прилегающий к внутренней стенке трубки жидкий цилиндр будет несколько задержан в своем движении, и сам замедлит движение следующего внутреннего, более близкого к оси жидкого цилиндра, и т. д., так что скорость движения жидкости в трубке будет различна в некотором поперечном круглом сечении трубки, замедляясь от центра к окружности. В том случае, когда внутренняя поверхность твердой трубки вполне смачивается жидкостью, можно принимать коэффициент внешнего Т. бесконечно великим и прилипающий к этой поверхности чрезвычайно тонкостенный жидкий цилиндр неподвижным, так что жидкость течет как бы в жидком цилиндре, а потому скорость ее истечения обусловливается лишь коэффициентом внутреннего Т. (жидкости о ту же жидкость), длиной трубки (от длины зависит поверхность Т.), ее радиусом и разностью гидростатических давлений в начале и в конце трубки.
Теоретические соображения, основанные на выше высказанных положениях, привели к следующему алгебраическому выражению величины скорости v истечения жидкости, имеющей коэффициент внутреннего Т. k, из цилиндрической трубки, длиной 1 миллим. при радиусе сечения, равном r, и разности давлений в начале и конце трубки р1р2:.
Здесь все величины подлежат непосредственному измерению, кроме коэффициента k, но удобнее определять вместо скорости v истечения – объем жидкости, протекшей по трубке в продолжение некоторого времени, или время, необходимое для истечения определенного объема жидкостей, из чего просто вычисляемая и скорость. Гаген и Пуазейль (1842) делали опыты над истечением жидкостей через волосные трубки еще до развития теории этого явления; результаты, найденные первым из них, были вполне подтверждены еще более точными исследованиями второго. Прибор Пуазейля состоял из стеклянного шарика с двумя диаметрально противоположными трубками; нижняя, отогнутая на прямой угол. соединялась с волосными трубками различных размеров. С открытого конца верхней трубки В производилось сжатым воздухом давление на жидкость, наполнявшую шарик, измеряемое высотой водяного столба, доходившей иногда до 41 метра, иногда же меньшей, чем 1 метр. Между чертами, сделанными на трубках выше и ниже шарика, заключался объем жидкости, который при различных давлениях был прогоняем чрез различные волосные трубки, при чем определялось всякий раз время (число секунд), для этого необходимое. Так как давление на жидкость и размеры трубки измерялись миллиметрами, то и количество истекающей жидкости определялось куб. мм. Пуазейль нашел величину коэффициента внутреннего Т. для воды при температуре 0° равною 0, 0001816. Определяя для трубок одного и того же поперечного сечения, но различной длины, время, нужное для истечения одного и того же количества воды при одной и той же температуре, Пуазейль нашел, что времена пропорциональны длинам трубок. Подобным образом он нашел, что времена истечения пропорциональны четвертой степени диаметров или радиусов трубки (т. е. ее канала). Вообще, количество вытекающей воды в некоторое время t может быть вычислено из выражения следующего вида, найденного Пуазейлем (v – объем жидкости, k – коэффициент, зависящий от внутреннего Т. жидкости, Р – давление, под которым течет вода по горизонтальной трубке; имеющей длину 1 и радиус канала r, t – продолжительность истечения). Величины t, вычисленные по этой формуле. превосходно согласуются с величинами, найденными из непосредственных наблюдений, но во всех опытах длина трубки была значительна относительно поперечника ее. Так, трубка с поперечником в 0, 252 мм. должна иметь не менее 54 мм.; при давлении столба около 1500 мм. т.е. l с лишком в 400 раз более r. Математическая теория дает выражение где r есть радиус трубки, а h – коэффициент внутреннего Т. Из сравнения этой формулы с тою, которую дал Пуазейль видно, что коэффициент k в последней связан с коэффициентом внутреннего Т. следующим образом:
Французский физик Кулон (Coulon) первый занимался изучением внутреннего Т. жидкостей. Для его опытов служил тонкий кружок, висящий горизонтально на тонкой проволоке, прикрепленной к его центру. Если несколько закрутить проволоку, то кружок начнет вращаться в сторону кручения, затем – в обратную сторону, т.е. будет совершать вращательные колебания около проволоки. В сосуде с водой кружок будет также совершать вращательные колебания, но Т. поверхностей кружка о воду станет замедлять эти колебания; если кружок смачивается водой, то сопротивление колебаниям кружка обусловливается коэффициентом внутреннего Т. жидкости. Видоизменение этого способа представляют вращательные колебания шара, висящего на проволоке в жидкости (Мейер, Кёниг). Еще иной способ употребляли Гельмгольц, Пиотровский и потом другие, приводя во вращательные колебания в воздухе полый шар или прямой цилиндр (Умани), наполненные испытуемой жидкостью, прилипающей ко внутренней поверхности сосуда; при вращательном движении сосуда она посредством Т. передается и жидкости из слоя в слой по направлению к оси цилиндра, а жидкость, с своей стороны, замедляет качания цилиндра. Теория всех этих методов приводит к формулам, гораздо более сложным, чем способ истечения жидкостей через волосные трубки. Тем не менее полезно отметить, что опыты и измерения, сделанные Мютцелем по способу Гельмгольца, дали для коэффициента внутреннего Т. воды при 20° число, очень близкое к найденному Пуазейлем (0,01009), а именно 0,01014. Если прилипание жидкости к твердому телу неполное, как напр. при течении ртути по стеклянным трубкам, то, как по теории, так и по опытам Пуазейля, простые вышеупомянутые законы истечения усложняются. Однако, Варбург из своих опытов нашел, что и ртуть вытекает чрез стеклянную трубку, повинуясь тем же законам, что и вода. Внутреннее Т. жидкости обусловливает так назыв. вязкость ее. Внутреннее Т. и вязкость сильно уменьшается при повышении температуры жидкости; так, напр., для воды коэффициент h при 0° равен 0,081, а при 70° только 0,0042 или если вязкость воды при 0° измерять числом 100, то при 70° вязкость воды выразится числом 23,5. Вязкость ртути при 3400 (недалеко от кипения ртути) почти вдвое меньше ее вязкости при 0°. Особенно сильно изменяется вязкость некоторых растительных масел: для миндального масла, при нагревании его от 20° до 80°, вязкость уменьшается в 6,5 раз, для оливкового – тоже от 20° до 80. вязкость уменьшается с лишком в 7 раз. Для практического определения относительно вязкости жидкостей заставляют их выливаться из сосуда определенной емкости по вертикальной волосной трубке. При этом давление жидкости уменьшается по мере ее истечения, но закон изменения давления в опытах с различными жидкостями остается один и тот же, поэтому результаты опытов сравнимы между собой. Давление жидкостей при этих условиях пропорционально их удельным весам. Обозначая в двух опытах удельные веса буквами р и р1 продолжительность истечения t и t1 и коэффициенты внутреннего Т. по прежнему чрез h и h1 , получим h:h1 = tp : t1p1. Отсюда и отношение между вязкостями. Обыкновенный серный эфир, жидкость весьма подвижная, имеет при 10° вязкость впятеро меньшую, чем вода. Жирные масла, напротив, имеют очень большую вязкость, а глицерин при 2,8° представляет в 2500 раз большую вязкость, чем вода при той же температуре.
Ф.П.
В) Т. между твердыми телами гораздо больше Т. в жидкостях, поэтому различные части машин, в которых движение сопровождается Т., смазывают различными материалами. Из работ по этому предмету укажем на определения механической роли различных смазочных жидкостей, употребляемых для смазки механизмов и машин, сделанные проф. Петровым в 1880-х гг. Подробнее см. Н. Петров, «Т. в машинах» («Инженерный Журнал», 1883); его же, «Описание и результаты опытов над Т. жидкостей и машин» («Известия Спб. Технологического Института», 1886); его же, «Практические результаты опытов и гидродинамической теории с применением к железным дорогам и бумагопрядильням» («Инженерный Журнал» за 1887 г.).
Д. Б.
Трепанация
Трепанация – означает операцию пробуравливания кости. В более узком смысле под Т. понимают вскрытие черепной полости. Кроме бурава, для этой операции может применяться долото, пила или особый инструмент, носящий название остеотома. Операция эта была еще известна в глубокой древности и подробно описана у Гиппократа. Она производится при известных формах перелома черепа, нарывах и опухолях мозга, в последнее время также при падучей болезни.
Т. (в доисторические времена и у первобытных народов). – Существуют несомненные доказательства того, что в самые отдаленные времена, начиная с неолитического периода, человек уже был знаком с хирургическими приемами вскрытия черепной полости, с так называемой Т. Свидетельством этому служат многочисленные черепа, собранные в самых различных местах и носящие следы искусственного прободения. По некоторым данным можно думать, что первобытный человек прибегал к Т. даже чаще, чем люди цивилизованные. Во многих дольменах находили сразу по несколько трепанированных экземпляров. Из 210 черепов, собранных недавно на о-ве Тенерифе и описанных Лушаном, оказалось 10 трепанированных, с отверстиями на лбу, темени, затылке, по средней линии или сбоку; кроме того, 25 черепов из этой коллекции носят следы неполной операции, – нарезки в области теменного родничка, происшедшие; по-видимому, от соскабливания лишних слоев кости. – Первый древний трепанированный череп был описан Брока в 1867 г. На этом черепе, добытом из мексиканской гробницы и принадлежавшем индивиду древней расы инков, имелось четырехугольное прободение, произведенное четырьмя линейными надрезами – прием, очень близкий к способу Т. в доисторические времена в Европе. Т. времен неолитического периода была впервые констатирована в 1773-74 гг., когда в Лионе д-р Прюньер и некоторые другие ученые демонстрировали несколько черепов из дольменов Ложери и др. мест с вырезанными в них круглыми или овальными отверстиями. За открытием Прюньера последовал целый ряд других во всех частях света. Известные до сих пор случаи доисторической Т. в России описаны проф. Д. Н. Анучиным в «Трудах IX археол. съезда в Вильне», 1893 г. Т. удержалась и в позднейшие эпохи, во Франции, напр. – до меровигнской эпохи включительно. Как на переживание первобытной Т. в Европе, сохранившейся до наших дней, можно указать на существование специалистов трепанеров в Черногории, Корнвалисе. Хорошая коллекция трепанированных черепов в оригиналах и муляжах имеется в парижском музее антропологического института. Существовали и посмертные Т., при которой играли роль мотивы религиозного свойства, например желание носить череп подвешенным на поясе, в качестве амулета, или желание дать душе, обитающей в черепе, свободный выход после смерти, как это до сих пор практикуется среди краснокожих Иллинойса. Что касается до Т. на живых, то одни склонны видеть в ней сознательный хирургический прием, другие приписывают ее предположению первобытного человека, что болезнь происходит от вселения злого духа, которого необходимо изгнать. В пользу того, что Т. применялась как чисто хирургический прием, говорят найденные на некоторых трепанированных черепах следы гнойных скоплений (череп из дольмена Port-blanc), или такие черепа, как из Mousseaux-les-Bray, которые признаны оперированными после травмы головы.
Литература. P. Broca, «Sur la trepanation du crane etc.» (Пap., 1877); S. do Baye, «La trepanation prehistorique» (ib., 1876); Gr. de Mortillet, «Races homaines prehistoriques et chirurgie religieuse de 1'epoque des dolmens» (ib., 1877); Nadaillac, «Memoire sur les trepanations prehistoriques» (П., 1886); Horsley, «Trepanning in the Neolitic Periode» («Journal of the Anthropol. Inst.», XVII, стр. 100); Munro, «The trepanning of the Human Skull in Prehistoric Times» (Эдинбург, 1891); Д. Н. Анучин, «Амулет из кости человеческого черепа и Т. черепов в древние времена в России» (М., 1895); Нидерле, «Человечество в доисторические времена» (СПб., 1898); ст. Филиппа Сальмона, «Trepanation» в «Dictionnaire de Sciences anthropologiques».
Л. Ш.
Трепанг
Трепанг – В России промысел Т. производится преимущественно вдоль берега Тихого океана, от залива Св. Ольги и Владивостока вниз до реки Тюмень-Уло, на сумму до 100 тыс. руб.
Тресковые
Тресковые (Gadidae) – семейство рыб из отряда мягкоперых (Anacanthini). Тело их более или менее вытянутое, с мелкими гладкими чешуйками. Спинных плавников 1, 2 или 3, они занимают почти всю спину, лучи задних спинных плавников хорошо развиты; подхвостовых плавников 1 или 2; хвостовой плавник обособлен по большей части от спинного и подхвостового, в противном случае спинной плавник имеет обособленный передний отдел. Брюшные плавники расположены впереди, на горле, и состоят по большей части из нескольких лучей; иногда они превращены в нить и в этом случае спинной плавник распадается на две части. Жаберные щели широкие, жаберные перепонки обыкновенно не прикреплены к горлу. Придаточных жабр нет, или они рудиментарны, железисты. Обыкновенно есть плавательный пузырь и кишечные придатки при выходе из желудка. Не особенно многочисленное по числу видов семейство это имеет важное значение как биологическое, так и промысловое, вследствие чрезвычайной многочисленности индивидов некоторых родов. Принадлежащие сюда рыбы по большей части живут на умеренных или малых глубинах, но некоторые представляют типические глубоководные формы. Первые водятся почти исключительно в умеренном и холодном поясе, достигая иногда крайне высоких широт (такова сайка или полярная треска – Gadus saida s. polaris); глубоководные формы имеют, напротив, обыкновенно, более широкое распространение и в низких широтах. Почти все живут исключительно в морях, пресноводные формы крайне малочисленны (напр. налим – Lota vulgaris). Ископаемых остатков известно мало. В экономическом отношении Т. вместе с лососевыми (Salmonidae) и сельдевыми (Clupeidae) представляют наиболее важные группы, служа объектом громадных промыслов и обширной мировой торговли. Наиболее важен из этого семейства род треска (Gadus), гораздо меньше роды Lota (налим – Lota vulgaris), Brosmius (морской налим или линек – Brosmias brosme), Molua или Molva (морская щука, молва – Molua molva и М. dipterygia) и др.
Н. Кн.
Третейский суд
Третейский суд в гражданском процессе. – Как видно из самого названия, Т. суд есть суд третьего лица, суд посредника или посредников (в противоположность самосуду сторон), и притом лица частного (в противоположность суду государственному). Т. суд-институт весьма древний; он предшествует суду государственному, требующему для своего появления более высокого уровня культурного развития. В России первые положительные указания на Т. суд имеются в памятниках XIV стол.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
Д. Б.
Б) Т. жидкостей. Если слой жидкости движется по другому неподвижному жидкому слою, то между ними, вследствие взаимного притяжения частиц обоих слоев, обнаруживается трение, действие которого будет заключаться в том, что скорость текущего слоя уменьшается, а слой, остававшийся неподвижным, начнет двигаться в ту же сторону, что и другой. Если слой жидкости течет с некоторой скоростью v по другому, тоже двигающемуся со скоростью, большей или меньшей, чем v, направленной в одну сторону с первой, то движение одного слоя будет замедлено, а другое ускорено, как замедляющая сила, в другом как ускоряющая. Если один слой двигался по другому, который сам движется по направлению, противоположному первому, то результатом Т. было бы замедление обоих течений. Течение жидкости по поверхности твердого тела также сопровождается Т., но если это твердое тело вполне смачивается жидкостью, то весьма тонкий ее слой удерживается твердым телом и становится неподвижным, и поэтому жидкость, текущая по такому смоченному твердому телу, течет как бы по жидкости, и если такое твердое тело имеет форму трубки, то жидкость протекает как бы по жидкой трубке. Величина Т. пропорциональна поверхности жидкости, соприкасающейся с твердой стенкой, и скорости течения параллельно поверхности стенки; сверх того величина Т. какойлибо жидкости зависит от свойств твердого тела, по поверхности которого течет жидкость, не вполне смачивающая это тело. Таким образом, обозначая величину скорости течения по неподвижному слою буквой v, а величину поверхности через s, можно выразить замедляющее или ускоряющее действие Т. произведением kvs, где k есть так называемый коэффициент Т. (внешнего). Жидкость, текущую в цилиндрической трубке, можно мысленно разделить на произвольно большое число тонкостенных жидких цилиндров, имеющих одну общую ось, и движущихся один в другом. Прилегающий к внутренней стенке трубки жидкий цилиндр будет несколько задержан в своем движении, и сам замедлит движение следующего внутреннего, более близкого к оси жидкого цилиндра, и т. д., так что скорость движения жидкости в трубке будет различна в некотором поперечном круглом сечении трубки, замедляясь от центра к окружности. В том случае, когда внутренняя поверхность твердой трубки вполне смачивается жидкостью, можно принимать коэффициент внешнего Т. бесконечно великим и прилипающий к этой поверхности чрезвычайно тонкостенный жидкий цилиндр неподвижным, так что жидкость течет как бы в жидком цилиндре, а потому скорость ее истечения обусловливается лишь коэффициентом внутреннего Т. (жидкости о ту же жидкость), длиной трубки (от длины зависит поверхность Т.), ее радиусом и разностью гидростатических давлений в начале и в конце трубки.
Теоретические соображения, основанные на выше высказанных положениях, привели к следующему алгебраическому выражению величины скорости v истечения жидкости, имеющей коэффициент внутреннего Т. k, из цилиндрической трубки, длиной 1 миллим. при радиусе сечения, равном r, и разности давлений в начале и конце трубки р1р2:.
Здесь все величины подлежат непосредственному измерению, кроме коэффициента k, но удобнее определять вместо скорости v истечения – объем жидкости, протекшей по трубке в продолжение некоторого времени, или время, необходимое для истечения определенного объема жидкостей, из чего просто вычисляемая и скорость. Гаген и Пуазейль (1842) делали опыты над истечением жидкостей через волосные трубки еще до развития теории этого явления; результаты, найденные первым из них, были вполне подтверждены еще более точными исследованиями второго. Прибор Пуазейля состоял из стеклянного шарика с двумя диаметрально противоположными трубками; нижняя, отогнутая на прямой угол. соединялась с волосными трубками различных размеров. С открытого конца верхней трубки В производилось сжатым воздухом давление на жидкость, наполнявшую шарик, измеряемое высотой водяного столба, доходившей иногда до 41 метра, иногда же меньшей, чем 1 метр. Между чертами, сделанными на трубках выше и ниже шарика, заключался объем жидкости, который при различных давлениях был прогоняем чрез различные волосные трубки, при чем определялось всякий раз время (число секунд), для этого необходимое. Так как давление на жидкость и размеры трубки измерялись миллиметрами, то и количество истекающей жидкости определялось куб. мм. Пуазейль нашел величину коэффициента внутреннего Т. для воды при температуре 0° равною 0, 0001816. Определяя для трубок одного и того же поперечного сечения, но различной длины, время, нужное для истечения одного и того же количества воды при одной и той же температуре, Пуазейль нашел, что времена пропорциональны длинам трубок. Подобным образом он нашел, что времена истечения пропорциональны четвертой степени диаметров или радиусов трубки (т. е. ее канала). Вообще, количество вытекающей воды в некоторое время t может быть вычислено из выражения следующего вида, найденного Пуазейлем (v – объем жидкости, k – коэффициент, зависящий от внутреннего Т. жидкости, Р – давление, под которым течет вода по горизонтальной трубке; имеющей длину 1 и радиус канала r, t – продолжительность истечения). Величины t, вычисленные по этой формуле. превосходно согласуются с величинами, найденными из непосредственных наблюдений, но во всех опытах длина трубки была значительна относительно поперечника ее. Так, трубка с поперечником в 0, 252 мм. должна иметь не менее 54 мм.; при давлении столба около 1500 мм. т.е. l с лишком в 400 раз более r. Математическая теория дает выражение где r есть радиус трубки, а h – коэффициент внутреннего Т. Из сравнения этой формулы с тою, которую дал Пуазейль видно, что коэффициент k в последней связан с коэффициентом внутреннего Т. следующим образом:
Французский физик Кулон (Coulon) первый занимался изучением внутреннего Т. жидкостей. Для его опытов служил тонкий кружок, висящий горизонтально на тонкой проволоке, прикрепленной к его центру. Если несколько закрутить проволоку, то кружок начнет вращаться в сторону кручения, затем – в обратную сторону, т.е. будет совершать вращательные колебания около проволоки. В сосуде с водой кружок будет также совершать вращательные колебания, но Т. поверхностей кружка о воду станет замедлять эти колебания; если кружок смачивается водой, то сопротивление колебаниям кружка обусловливается коэффициентом внутреннего Т. жидкости. Видоизменение этого способа представляют вращательные колебания шара, висящего на проволоке в жидкости (Мейер, Кёниг). Еще иной способ употребляли Гельмгольц, Пиотровский и потом другие, приводя во вращательные колебания в воздухе полый шар или прямой цилиндр (Умани), наполненные испытуемой жидкостью, прилипающей ко внутренней поверхности сосуда; при вращательном движении сосуда она посредством Т. передается и жидкости из слоя в слой по направлению к оси цилиндра, а жидкость, с своей стороны, замедляет качания цилиндра. Теория всех этих методов приводит к формулам, гораздо более сложным, чем способ истечения жидкостей через волосные трубки. Тем не менее полезно отметить, что опыты и измерения, сделанные Мютцелем по способу Гельмгольца, дали для коэффициента внутреннего Т. воды при 20° число, очень близкое к найденному Пуазейлем (0,01009), а именно 0,01014. Если прилипание жидкости к твердому телу неполное, как напр. при течении ртути по стеклянным трубкам, то, как по теории, так и по опытам Пуазейля, простые вышеупомянутые законы истечения усложняются. Однако, Варбург из своих опытов нашел, что и ртуть вытекает чрез стеклянную трубку, повинуясь тем же законам, что и вода. Внутреннее Т. жидкости обусловливает так назыв. вязкость ее. Внутреннее Т. и вязкость сильно уменьшается при повышении температуры жидкости; так, напр., для воды коэффициент h при 0° равен 0,081, а при 70° только 0,0042 или если вязкость воды при 0° измерять числом 100, то при 70° вязкость воды выразится числом 23,5. Вязкость ртути при 3400 (недалеко от кипения ртути) почти вдвое меньше ее вязкости при 0°. Особенно сильно изменяется вязкость некоторых растительных масел: для миндального масла, при нагревании его от 20° до 80°, вязкость уменьшается в 6,5 раз, для оливкового – тоже от 20° до 80. вязкость уменьшается с лишком в 7 раз. Для практического определения относительно вязкости жидкостей заставляют их выливаться из сосуда определенной емкости по вертикальной волосной трубке. При этом давление жидкости уменьшается по мере ее истечения, но закон изменения давления в опытах с различными жидкостями остается один и тот же, поэтому результаты опытов сравнимы между собой. Давление жидкостей при этих условиях пропорционально их удельным весам. Обозначая в двух опытах удельные веса буквами р и р1 продолжительность истечения t и t1 и коэффициенты внутреннего Т. по прежнему чрез h и h1 , получим h:h1 = tp : t1p1. Отсюда и отношение между вязкостями. Обыкновенный серный эфир, жидкость весьма подвижная, имеет при 10° вязкость впятеро меньшую, чем вода. Жирные масла, напротив, имеют очень большую вязкость, а глицерин при 2,8° представляет в 2500 раз большую вязкость, чем вода при той же температуре.
Ф.П.
В) Т. между твердыми телами гораздо больше Т. в жидкостях, поэтому различные части машин, в которых движение сопровождается Т., смазывают различными материалами. Из работ по этому предмету укажем на определения механической роли различных смазочных жидкостей, употребляемых для смазки механизмов и машин, сделанные проф. Петровым в 1880-х гг. Подробнее см. Н. Петров, «Т. в машинах» («Инженерный Журнал», 1883); его же, «Описание и результаты опытов над Т. жидкостей и машин» («Известия Спб. Технологического Института», 1886); его же, «Практические результаты опытов и гидродинамической теории с применением к железным дорогам и бумагопрядильням» («Инженерный Журнал» за 1887 г.).
Д. Б.
Трепанация
Трепанация – означает операцию пробуравливания кости. В более узком смысле под Т. понимают вскрытие черепной полости. Кроме бурава, для этой операции может применяться долото, пила или особый инструмент, носящий название остеотома. Операция эта была еще известна в глубокой древности и подробно описана у Гиппократа. Она производится при известных формах перелома черепа, нарывах и опухолях мозга, в последнее время также при падучей болезни.
Т. (в доисторические времена и у первобытных народов). – Существуют несомненные доказательства того, что в самые отдаленные времена, начиная с неолитического периода, человек уже был знаком с хирургическими приемами вскрытия черепной полости, с так называемой Т. Свидетельством этому служат многочисленные черепа, собранные в самых различных местах и носящие следы искусственного прободения. По некоторым данным можно думать, что первобытный человек прибегал к Т. даже чаще, чем люди цивилизованные. Во многих дольменах находили сразу по несколько трепанированных экземпляров. Из 210 черепов, собранных недавно на о-ве Тенерифе и описанных Лушаном, оказалось 10 трепанированных, с отверстиями на лбу, темени, затылке, по средней линии или сбоку; кроме того, 25 черепов из этой коллекции носят следы неполной операции, – нарезки в области теменного родничка, происшедшие; по-видимому, от соскабливания лишних слоев кости. – Первый древний трепанированный череп был описан Брока в 1867 г. На этом черепе, добытом из мексиканской гробницы и принадлежавшем индивиду древней расы инков, имелось четырехугольное прободение, произведенное четырьмя линейными надрезами – прием, очень близкий к способу Т. в доисторические времена в Европе. Т. времен неолитического периода была впервые констатирована в 1773-74 гг., когда в Лионе д-р Прюньер и некоторые другие ученые демонстрировали несколько черепов из дольменов Ложери и др. мест с вырезанными в них круглыми или овальными отверстиями. За открытием Прюньера последовал целый ряд других во всех частях света. Известные до сих пор случаи доисторической Т. в России описаны проф. Д. Н. Анучиным в «Трудах IX археол. съезда в Вильне», 1893 г. Т. удержалась и в позднейшие эпохи, во Франции, напр. – до меровигнской эпохи включительно. Как на переживание первобытной Т. в Европе, сохранившейся до наших дней, можно указать на существование специалистов трепанеров в Черногории, Корнвалисе. Хорошая коллекция трепанированных черепов в оригиналах и муляжах имеется в парижском музее антропологического института. Существовали и посмертные Т., при которой играли роль мотивы религиозного свойства, например желание носить череп подвешенным на поясе, в качестве амулета, или желание дать душе, обитающей в черепе, свободный выход после смерти, как это до сих пор практикуется среди краснокожих Иллинойса. Что касается до Т. на живых, то одни склонны видеть в ней сознательный хирургический прием, другие приписывают ее предположению первобытного человека, что болезнь происходит от вселения злого духа, которого необходимо изгнать. В пользу того, что Т. применялась как чисто хирургический прием, говорят найденные на некоторых трепанированных черепах следы гнойных скоплений (череп из дольмена Port-blanc), или такие черепа, как из Mousseaux-les-Bray, которые признаны оперированными после травмы головы.
Литература. P. Broca, «Sur la trepanation du crane etc.» (Пap., 1877); S. do Baye, «La trepanation prehistorique» (ib., 1876); Gr. de Mortillet, «Races homaines prehistoriques et chirurgie religieuse de 1'epoque des dolmens» (ib., 1877); Nadaillac, «Memoire sur les trepanations prehistoriques» (П., 1886); Horsley, «Trepanning in the Neolitic Periode» («Journal of the Anthropol. Inst.», XVII, стр. 100); Munro, «The trepanning of the Human Skull in Prehistoric Times» (Эдинбург, 1891); Д. Н. Анучин, «Амулет из кости человеческого черепа и Т. черепов в древние времена в России» (М., 1895); Нидерле, «Человечество в доисторические времена» (СПб., 1898); ст. Филиппа Сальмона, «Trepanation» в «Dictionnaire de Sciences anthropologiques».
Л. Ш.
Трепанг
Трепанг – В России промысел Т. производится преимущественно вдоль берега Тихого океана, от залива Св. Ольги и Владивостока вниз до реки Тюмень-Уло, на сумму до 100 тыс. руб.
Тресковые
Тресковые (Gadidae) – семейство рыб из отряда мягкоперых (Anacanthini). Тело их более или менее вытянутое, с мелкими гладкими чешуйками. Спинных плавников 1, 2 или 3, они занимают почти всю спину, лучи задних спинных плавников хорошо развиты; подхвостовых плавников 1 или 2; хвостовой плавник обособлен по большей части от спинного и подхвостового, в противном случае спинной плавник имеет обособленный передний отдел. Брюшные плавники расположены впереди, на горле, и состоят по большей части из нескольких лучей; иногда они превращены в нить и в этом случае спинной плавник распадается на две части. Жаберные щели широкие, жаберные перепонки обыкновенно не прикреплены к горлу. Придаточных жабр нет, или они рудиментарны, железисты. Обыкновенно есть плавательный пузырь и кишечные придатки при выходе из желудка. Не особенно многочисленное по числу видов семейство это имеет важное значение как биологическое, так и промысловое, вследствие чрезвычайной многочисленности индивидов некоторых родов. Принадлежащие сюда рыбы по большей части живут на умеренных или малых глубинах, но некоторые представляют типические глубоководные формы. Первые водятся почти исключительно в умеренном и холодном поясе, достигая иногда крайне высоких широт (такова сайка или полярная треска – Gadus saida s. polaris); глубоководные формы имеют, напротив, обыкновенно, более широкое распространение и в низких широтах. Почти все живут исключительно в морях, пресноводные формы крайне малочисленны (напр. налим – Lota vulgaris). Ископаемых остатков известно мало. В экономическом отношении Т. вместе с лососевыми (Salmonidae) и сельдевыми (Clupeidae) представляют наиболее важные группы, служа объектом громадных промыслов и обширной мировой торговли. Наиболее важен из этого семейства род треска (Gadus), гораздо меньше роды Lota (налим – Lota vulgaris), Brosmius (морской налим или линек – Brosmias brosme), Molua или Molva (морская щука, молва – Molua molva и М. dipterygia) и др.
Н. Кн.
Третейский суд
Третейский суд в гражданском процессе. – Как видно из самого названия, Т. суд есть суд третьего лица, суд посредника или посредников (в противоположность самосуду сторон), и притом лица частного (в противоположность суду государственному). Т. суд-институт весьма древний; он предшествует суду государственному, требующему для своего появления более высокого уровня культурного развития. В России первые положительные указания на Т. суд имеются в памятниках XIV стол.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118