С тех пор сфинкс считается символом загадочности.
Легенда эта тоже возникла не в Египте, а в древней Греции. Да и назвали фараоновы гробницы пирамидами тоже греки, а не египтяне. Пирамидой стали называть математики и геометрическое тело, основанием которого может быть любой многоугольник, а наклонные боковые грани - обязательно треугольники.
- Всё это хорошо, - сказал я. - Но зачем всё-таки фараоны строили себе такие огромные гробницы? Капитан помедлил.
- На этот вопрос не сразу ответишь. Вероятно, большую роль здесь играли обычаи древних египтян, их религия. Но главную причину, по-моему, следует искать в том, что, возводя величественные надгробия, фараоны хотели утвердить своё могущество, прославиться в веках. Что ж, это им отчасти удалось. Подумать только: что мы знаем о Хеопсе? Ничего или почти ничего. А имя его помнят до сих пор. Помнят благодаря пирамиде, которая интересует нас куда больше, чем тот, для кого она построена.
- Вот уж ничего интересного! - фыркнул я. - Разве что громадная очень...
- Некоторые учёные почему-то иначе думают, - усмехнулся капитан. - Они подметили в пирамиде Хеопса много замечательных особенностей.
- Например?
- Например, то, что размеры гробницы, углы наклона его бесчисленных внутренних коридоров выбраны не произвольно. Они связаны с астрономическими величинами, а следовательно, и с математикой. Судя по этому, египтяне хорошо знали и размеры нашей Земли, и наклон её оси, и расстояние от Земли до Луны...
В общем, немые камни могут много интересного рассказать о древнем народе, о его верованиях, о его исчезнувшей культуре. Надо только научиться как следует понимать их язык. А это, брат, требует храбрости, упорства, увлечённости. И любознательности, конечно.
Капитан ничем не попрекнул меня за необдуманные слова. Он не сделал даже никакого ударения на "любознательности". Но я-то сразу понял, кого он имел в виду, и дал себе слово никогда не выскакивать со своими опрометчивыми выводами. А ещё я решил обязательно побольше разузнать о древнем Египте. Ведь о нём, говорят, написано много - целые горы книг. Ну, гору-то я, пожалуй, не одолею, а одну-две книжки - непременно.
Вернувшись на Фрегат, мы с коком надумали вычислить объём пирамиды, благо нам это не впервой. Мы ведь вычисляли уже объём куба, а потом и аквариума. И узнали, что делается это совершенно одинаково: площадь основания надо помножить на высоту. Стало быть, и объём пирамиды вычисляется так же. Нам нужно было только сперва вычислить площадь основания пирамиды. А так как основание её - квадрат со стороной 233 метра, нетрудно понять, что площадь основания равна 54289 квадратным метрам (233 ? 233 = 54289). После этого мы умножили площадь основания на высоту (а она равна 146,5 метра) и получили огромное число: 7953338,5 кубометра. Вот так объём! Не объём, а объёмище!
Мы с коком даже немного заважничали. Но капитан поубавил нам спеси, сказав, что мы всё сделали верно, за одним исключением: полученное нами число надо разделить на три. Почему? Да потому, что объём пирамиды равен одной трети объёма прямоугольной коробки с той же высотой и тем же основанием. Это давным-давно доказано греческим математиком Эвдоксом.
Но нам всё-таки захотелось проверить. Пи вспомнил, что у него в камбузе есть четырёхугольная банка с манной крупой. К тому же основание у банки квадратное. Мы тут же вырезали из картона и склеили пирамиду с точно таким же квадратным основанием и такой же высотой, как у этой банки. Потом перевернули пирамиду вершиной вниз, вынули картонное дно и всыпали в отверстие крупу из банки. Нам пришлось три раза наполнять пирамиду доверху, чтобы высыпать всю крупу. Только тогда мы поверили, что старик Эвдокс не ошибся и что объём пирамиды равен в точности одной трети объёма этой банки.
ПРАЗДНИК СВЕТА
24 нуляля
Кок сообщил, что днём никаких стоянок не будет, и капитан приказал нам заняться уборкой. Мне очень хотелось спать, но Пи добавил, что вечером мы увидим Праздник Света, и я сразу взялся за швабру.
Когда совсем стемнело, Фрегат стал на рейде вблизи красивой бухты. И вот началось... Высоко в воздухе - с востока на запад - протянулась тоненькая светящаяся проволока. Она ярко выделялась на тёмном небе.
Неожиданно на эту проволоку вскочил обруч, тоже светящийся, а на обруче зажглась красная точка - лампочка.
Заиграла музыка, и обруч плавно покатился по проволоке прямо на восток. Он катился всё быстрее и быстрее и вскоре совсем исчез из виду. Зато линия, которую прочертила красная лампочка, так и осталась висеть в воздухе, словно бесконечный железнодорожный мост, построенный из красных светящихся арок.
Я удивился: ведь лампочка вертится вместе с обручем - значит, должна вычерчивать в воздухе круги, а получается что-то совсем другое. Капитан тут же обнаружил, в чём моя ошибка: я не подумал о том, что лампочка не только вращается вместе с обручем, но одновременно катится заодно с ним по прямой.
По прямой-то по прямой, а получается при этом кривая, состоящая из арок. Эта кривая (так сообщили по радио с берега) называется циклоидой так же, как и бухта.
Капитан объяснил, что "циклоида" - слово греческое, происходит от слова "циклос", что означает "круг". Оттого слово это часто входит в название тех явлений и приборов, которые связаны с вращением.
Воздушный вихрь, например, называется циклоном. Ведь вихрь - это кружение воздуха.
А вот прибор для кружения самых маленьких частиц материи называется циклотроном. Таких частиц очень много - электроны, протоны, нейтроны... Учёные без конца открывают всё новые и новые частицы, из которых состоит материя (то есть мы сами и всё, что нас окружает): Как же они это делают? Да с помощью циклотрона. Циклотрон - сооружение, очень похожее на огромную полую, то есть пустую внутри, баранку. Ещё его называют ускорителем. Если находящиеся в циклотроне частицы материи очень сильно разогнать, то есть заставить их кружиться с большой скоростью, они станут бомбардировать другие частицы, разбивать их. При этом появляются новые, ещё неизвестные частицы материи. А физики за ними наблюдают, изучают их повадки...
Пока капитан рассказывал про циклотрон, обруч, который укатился на восток, успел вернуться обратно, только уже с запада, и остановился там, откуда начал путешествие.
Светящаяся проволока исчезла, обруч повис в воздухе, лампочка его погасла, и на этом большом обруче очутился другой, маленький. Теперь красная лампочка вспыхнула на нём.
Снова заиграла музыка. Маленький обруч покатился по большому, и лампочка его тоже стала чертить в воздухе светящуюся линию. Когда маленький обруч вернулся на место, в небе светился громадный красный цветок. Оказалось, у него даже есть название: эпициклоида.
Только я хотел спросить, что это такое, как маленький обруч забрался внутрь большого и снова покатился по его окружности. Красная лампочка нарисовала ещё одну кривую. С берега объявили, что это гипоциклоида, и тогда только объяснили, что по-гречески "эпи" означает "над", а "гипо" "под". Ведь маленький обруч сперва катился снаружи, а потом - внутри большого!
Всё это было красиво, но непонятно - к чему? Однако капитан сказал, что линии, которые мы сегодня увидели, необходимы в технике. Инженеры без них как без рук. Циклоида используется и в автомобиле, и в токарном станке, и в часах, и уж обязательно в лебёдке, которая выбирает наш якорь... Словом, там, где нужно заставить вращаться вал. Тут-то и выручают зубчатые колёса - шестерёнки. Зубья одной шестерёнки попадают между зубьями другой, происходит сцепление. Одна шестерёнка заставляет вращаться другую, укреплённую на валу, а вал приводит в движение машину.
- Всё это понятно, - сказал Пи, - но при чём здесь циклоида?
- А при том, - пояснил капитан, - что очень часто изгиб зубца шестерёнки делается в форме циклоиды. Оттого соединения таких шестерёнок называются циклоидальными зацеплениями.
Мы с коком сейчас же захотели проверить, как шестерёнки зацепляются зубьями. Он растопырил пальцы, а я всунул между ними свои. Этого нам показалось мало.
Тогда, изображая шестерёнки, мы, стали кататься по палубе, налетели друг на друга, и получилось такое циклоидальное зацепление, что нас насилу расцепили.
СТОЛ НАХОДОК
25 нуляля
Целый день провели в бухте Чисел.
Признаюсь, с числами у меня нелады. То забуду при делении снести следующую цифру, особенно нуль, то никак не перемножу правильно семь и восемь - всё получается 58.
Но самое трудное - запомнить какое-нибудь большое число. У меня на числа очень плохая память, всегда я их забываю!
И что же вы думаете? Только мы сошли на берег, как у самой пристани увидели дом с такой вывеской:
СТОЛ НАХОДОК ЗАБЫТЫХ ЧИСЕЛ
Выходит, забытое число можно найти, как зонтик, оставленный в троллейбусе? А я как раз забыл номер своего телефона и решил зайти в стол находок. Кок сказал, что тоже забыл свой телефон, и мы пошли вместе.
Заведующий принял нас радушно и сразу же стал уверять, что нам нечего беспокоиться; если мы забыли важное число, он непременно его найдёт.
У него, оказывается, здесь хранятся все числа, какие есть на свете.
- Итак, что за приметы у вашего числа? - обратился он ко мне.
- Здравствуйте! Разве у чисел бывают приметы?
- А как же! - ответил Заведующий. - У чисел столько примет, свойств, столько неожиданных взаимоотношений, таинственных связей, что далеко не все из них разгаданы. Поэтому, прежде чем забыть какое-нибудь число, надо запомнить хотя бы несколько его примет.
Мы пообещали в следующий раз забывать числа осмотрительнее и попросили рассказать, какие же у чисел бывают приметы.
Заведующий выдвинул из шкафа ящичек и достал наугад карточку. На ней было написано: 284 130.
- Ух, какая огромная цифра! - выдохнул я. Заведующий ужаснулся:
- Что ты говоришь?! Разве это цифра? Это число! Цифры не могут быть огромными или маленькими. Они ведь всего-навсего знаки, которыми записывают числа. Как слово - буквами. Но, несмотря на то что цифр только десять, ими можно записать бесконечное множество чисел. Так вот, - продолжал он, число 284 130 записано шестью цифрами, поэтому оно ШЕСТИЗНАЧНОЕ. Значность - первая важная примета ЦЕЛОГО числа. А вы, надеюсь, уже поняли, что наше число-целое. Эта примета тоже немаловажная. Что ещё можно сказать о числе 284 130? Конечно, то, что оно ПОЛОЖИТЕЛЬНОЕ. Почему положительное? Да потому что оно больше нуля.
- Можно подумать, есть числа меньше нуля!
- Конечно, есть, - возразил Заведующий, и нетрудно догадаться, что их называют ОТРИЦАТЕЛЬНЫМИ.
Постойте, постойте! Это я уже слышал: про положительные и отрицательные числа и ещё про то, что нуль, как верный страж, стоит между ними, говорил Президент острова Нуль. Но я тогда не понял, что это за числа, которые меньше нуля. И неужели без них нельзя обойтись? Оказалось, никак нельзя!
- Без отрицательных чисел математики как без рук, - сказал Заведующий. - Попробуй положить на стол 3 яблока и отнять от них 5. Ничего не выйдет! С яблоками не выйдет, а с числами сколько угодно: 3 - 5 = - 2. Получилось отрицательное число: минус два!
Вот так фокус! Мы страшно удивились, но ещё больше удивился Заведующий.
- Вы что, никогда не видели термометра? - спросил он. - Представьте себе, что он показывает 3 градуса тепла (+3), а потом температура вдруг понизится на 5 градусов. Что вы тогда увидите на термометре?
- Два градуса мороза, - сказал Пи.
- Правильно, два градуса ниже нуля, то есть минус 2 градуса. Вот вы и вычли из трёх пять и получили минус два!
- Теперь понятно, - сказал Пи.
- А вот ещё один признак нашего числа, - продолжал Заведующий, - оно ДЕЙСТВИТЕЛЬНОЕ.
Ха! Выходит, есть и недействительные? Ну и чудак! Может, он...того? Но чудак посмотрел на нас вполне нормальными глазами и сказал, что смеяться нечего, потому что такие числа есть. Их называют МНИМЫМИ. Только он, к сожалению, не может сейчас объяснить, что это за числа. Да они нам пока и не понадобятся, потому что номера телефонов мнимыми не бывают.
Но это было не всё. У нашего числа выискался ещё один важный признак: оно РАЦИОНАЛЬНОЕ. Это значит, что его можно совершенно точно записать или отложить на линейке. И тут мы с коком сразу смекнули, что есть, стало быть, числа, которые точно записать нельзя. И не ошиблись: такие числа в самом деле есть, и называются они ИРРАЦИОНАЛЬНЫМИ. Их можно записать только приближённо. Вот, например, число "пи": оно приближённо равно трём целым и четырнадцати сотым.
Это-то мы знали. Но вот новость: выходит, мой друг Пи - иррациональное число! Век живи - век учись!
Итак, что же мы узнали о числе 284 130? Мы узнали, что оно шестизначное, целое, положительное, действительное, рациональное.
- Добавьте ещё, что оно ЧЁТНОЕ, - сказал Заведующий. - Видите, как много у него признаков. И всё-таки их недостаточно. Чтобы найти забытое число, нужно знать не только простейшие, но и особые его признаки - ну хотя бы сумму его цифр. Для нашего числа она равна 18 (2 + 8 + 4 + 1 + 3 + 0 = 18). Обратите также внимание на то, что число 284 130 - СОСТАВНОЕ: его можно разложить на множители. И тут я опять подумал, что если есть числа, которые разложить на множители можно, значит, есть числа, которые разложить на множители нельзя. И снова попал в самую точку. Почти. Потому что такие числа есть (их называют ПРОСТЫМИ), но они всё-таки делятся на единицу и на самих себя. А больше ни на что. Вот, например: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29... Конечно, это только первые простые числа, всего-то их бесконечное множество. Самое большое из найденных простых чисел записывается более чем тысячью тремястами знаков. С ума сойти! А какое следующее - неизвестно. Пока еще не вычислили. Впрочем...
Тут Заведующий посмотрел на нас, засмеялся и сказал, что нам в самый раз пойти отдохнуть. Тем более, что рабочий день его кончился. Мы поблагодарили его и пошли на Фрегат.
НОВЫЕ ПРИЗНАКИ
26 нуляля
Сегодня утром капитан сказал, что и этот день Фрегат простоит в бухте Чисел.
Мы с коком тотчас отправились на берег и сами не заметили, как снова очутились у стола находок. Заведующий, казалось, ничуть не удивился нашему приходу и тут же вынул карточку со знакомым нам уже числом 284 130.
- Вчера вы сказали, что это число составное, - вспомнил Пи. - Как это надо понимать?
- Потому что сразу видно, что это число ОБЯЗАТЕЛЬНО разделится и на 2, и на 3, и на 5, и на 6, и на 9, и на 10, и на 11!
Мы так и ахнули! Как он догадался?
А он вовсе и не догадывался, а знал признаки делимости на эти числа. Оказалось, что число 284 130 делится на 2 потому, что оно чётное. Чтобы узнать, делится ли число на 3 и на 9, надо узнать сумму его цифр. Если эта сумма делится на 3 и на 9, значит, на 3 и на 9 делится и само число. Сумма цифр нашего числа равна 18. А 18 делится и на 3, и на 9. Значит, на них же делится и наше число.
- Пойдём дальше, - продолжал Заведующий. - Раз наше число делится на 2 и на 3, оно, конечно, делится и на 6. Ведь 6 = 2 ? 3. А на 5 и на 10 оно делится потому, что оканчивается нулём. Как видите, ничего сложного здесь нет.
- Вы забыли про число 11, - напомнил Пи. - Какой признак делимости на него?
- Про 11 я действительно забыл, - смущённо улыбнулся Заведующий. Этот признак несложен. Чтобы узнать, делится ли число 284 130 на 11, я сложил его цифры через одну, - сперва те, что стоят на нечётных местах: 2 + 4 + 3 = 9, а затем те, что на чётных: 8 + 1 + 0 = 9. Как видите, обе суммы одинаковы, а это верный признак делимости на 11. А теперь, - Заведующий торжественно поднял палец, - я расскажу вам ещё о двух замечательных особенностях нашего числа. Обратите внимание на первые две его цифры: они образуют двухзначное число 28, а первые три цифры - трёхзначное число 284.
Каждое из этих чисел замечательно по-своему. Начнём с числа 28. Какие у него младшие делители? Это 1, 2, 4, 7 и 14. Сложите их.
Мы сложили, и что бы вы думали? Оказалось, сумма младших делителей числа 28 равна самому числу! 1+2+4+7+14 = 28.
Заведующий сказал, что такие числа называются СОВЕРШЕННЫМИ и что сейчас известно восемь совершенных чисел. Например, число 6. Оно тоже совершенное: сумма его младших делителей равна 6: 1 + 2 + 3 = 6.
Чудеса! А что происходит с числом 284?
- Тут чудеса другие, - сказал Заведующий. - Его младшие делители 1, 2, 4, 71, 142. Если мы их сложим, то получим в сумме...
- Число 220, - сосчитал я. - И никаких чудес! Заведующий усмехнулся.
- А чудеса всё-таки есть. Сложим теперь сумму младших делителей числа 220. Это 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110. Что у нас получится? Он победоносно откинулся на спинку стула, - У нас получится 284!
- Ну и что?
- Как - что? Да то, что между числами 220 и 284 существуют интересные взаимоотношения. Можно сказать, дружеские. Они обменялись суммой своих младших делителей. Потому-то их и называют ДРУЖЕСТВЕННЫМИ...
Интересно, сколько других признаков числа 284 130 мы узнали бы сегодня, если бы Заведующий не догадался, что и этих нам на первый раз вполне достаточно?
ПИСЬМО В БУТЫЛКЕ
27 нуляля
Сегодня Единица разрешил мне побыть с ним на капитанском мостике.
1 2 3 4 5 6 7 8 9 10
Легенда эта тоже возникла не в Египте, а в древней Греции. Да и назвали фараоновы гробницы пирамидами тоже греки, а не египтяне. Пирамидой стали называть математики и геометрическое тело, основанием которого может быть любой многоугольник, а наклонные боковые грани - обязательно треугольники.
- Всё это хорошо, - сказал я. - Но зачем всё-таки фараоны строили себе такие огромные гробницы? Капитан помедлил.
- На этот вопрос не сразу ответишь. Вероятно, большую роль здесь играли обычаи древних египтян, их религия. Но главную причину, по-моему, следует искать в том, что, возводя величественные надгробия, фараоны хотели утвердить своё могущество, прославиться в веках. Что ж, это им отчасти удалось. Подумать только: что мы знаем о Хеопсе? Ничего или почти ничего. А имя его помнят до сих пор. Помнят благодаря пирамиде, которая интересует нас куда больше, чем тот, для кого она построена.
- Вот уж ничего интересного! - фыркнул я. - Разве что громадная очень...
- Некоторые учёные почему-то иначе думают, - усмехнулся капитан. - Они подметили в пирамиде Хеопса много замечательных особенностей.
- Например?
- Например, то, что размеры гробницы, углы наклона его бесчисленных внутренних коридоров выбраны не произвольно. Они связаны с астрономическими величинами, а следовательно, и с математикой. Судя по этому, египтяне хорошо знали и размеры нашей Земли, и наклон её оси, и расстояние от Земли до Луны...
В общем, немые камни могут много интересного рассказать о древнем народе, о его верованиях, о его исчезнувшей культуре. Надо только научиться как следует понимать их язык. А это, брат, требует храбрости, упорства, увлечённости. И любознательности, конечно.
Капитан ничем не попрекнул меня за необдуманные слова. Он не сделал даже никакого ударения на "любознательности". Но я-то сразу понял, кого он имел в виду, и дал себе слово никогда не выскакивать со своими опрометчивыми выводами. А ещё я решил обязательно побольше разузнать о древнем Египте. Ведь о нём, говорят, написано много - целые горы книг. Ну, гору-то я, пожалуй, не одолею, а одну-две книжки - непременно.
Вернувшись на Фрегат, мы с коком надумали вычислить объём пирамиды, благо нам это не впервой. Мы ведь вычисляли уже объём куба, а потом и аквариума. И узнали, что делается это совершенно одинаково: площадь основания надо помножить на высоту. Стало быть, и объём пирамиды вычисляется так же. Нам нужно было только сперва вычислить площадь основания пирамиды. А так как основание её - квадрат со стороной 233 метра, нетрудно понять, что площадь основания равна 54289 квадратным метрам (233 ? 233 = 54289). После этого мы умножили площадь основания на высоту (а она равна 146,5 метра) и получили огромное число: 7953338,5 кубометра. Вот так объём! Не объём, а объёмище!
Мы с коком даже немного заважничали. Но капитан поубавил нам спеси, сказав, что мы всё сделали верно, за одним исключением: полученное нами число надо разделить на три. Почему? Да потому, что объём пирамиды равен одной трети объёма прямоугольной коробки с той же высотой и тем же основанием. Это давным-давно доказано греческим математиком Эвдоксом.
Но нам всё-таки захотелось проверить. Пи вспомнил, что у него в камбузе есть четырёхугольная банка с манной крупой. К тому же основание у банки квадратное. Мы тут же вырезали из картона и склеили пирамиду с точно таким же квадратным основанием и такой же высотой, как у этой банки. Потом перевернули пирамиду вершиной вниз, вынули картонное дно и всыпали в отверстие крупу из банки. Нам пришлось три раза наполнять пирамиду доверху, чтобы высыпать всю крупу. Только тогда мы поверили, что старик Эвдокс не ошибся и что объём пирамиды равен в точности одной трети объёма этой банки.
ПРАЗДНИК СВЕТА
24 нуляля
Кок сообщил, что днём никаких стоянок не будет, и капитан приказал нам заняться уборкой. Мне очень хотелось спать, но Пи добавил, что вечером мы увидим Праздник Света, и я сразу взялся за швабру.
Когда совсем стемнело, Фрегат стал на рейде вблизи красивой бухты. И вот началось... Высоко в воздухе - с востока на запад - протянулась тоненькая светящаяся проволока. Она ярко выделялась на тёмном небе.
Неожиданно на эту проволоку вскочил обруч, тоже светящийся, а на обруче зажглась красная точка - лампочка.
Заиграла музыка, и обруч плавно покатился по проволоке прямо на восток. Он катился всё быстрее и быстрее и вскоре совсем исчез из виду. Зато линия, которую прочертила красная лампочка, так и осталась висеть в воздухе, словно бесконечный железнодорожный мост, построенный из красных светящихся арок.
Я удивился: ведь лампочка вертится вместе с обручем - значит, должна вычерчивать в воздухе круги, а получается что-то совсем другое. Капитан тут же обнаружил, в чём моя ошибка: я не подумал о том, что лампочка не только вращается вместе с обручем, но одновременно катится заодно с ним по прямой.
По прямой-то по прямой, а получается при этом кривая, состоящая из арок. Эта кривая (так сообщили по радио с берега) называется циклоидой так же, как и бухта.
Капитан объяснил, что "циклоида" - слово греческое, происходит от слова "циклос", что означает "круг". Оттого слово это часто входит в название тех явлений и приборов, которые связаны с вращением.
Воздушный вихрь, например, называется циклоном. Ведь вихрь - это кружение воздуха.
А вот прибор для кружения самых маленьких частиц материи называется циклотроном. Таких частиц очень много - электроны, протоны, нейтроны... Учёные без конца открывают всё новые и новые частицы, из которых состоит материя (то есть мы сами и всё, что нас окружает): Как же они это делают? Да с помощью циклотрона. Циклотрон - сооружение, очень похожее на огромную полую, то есть пустую внутри, баранку. Ещё его называют ускорителем. Если находящиеся в циклотроне частицы материи очень сильно разогнать, то есть заставить их кружиться с большой скоростью, они станут бомбардировать другие частицы, разбивать их. При этом появляются новые, ещё неизвестные частицы материи. А физики за ними наблюдают, изучают их повадки...
Пока капитан рассказывал про циклотрон, обруч, который укатился на восток, успел вернуться обратно, только уже с запада, и остановился там, откуда начал путешествие.
Светящаяся проволока исчезла, обруч повис в воздухе, лампочка его погасла, и на этом большом обруче очутился другой, маленький. Теперь красная лампочка вспыхнула на нём.
Снова заиграла музыка. Маленький обруч покатился по большому, и лампочка его тоже стала чертить в воздухе светящуюся линию. Когда маленький обруч вернулся на место, в небе светился громадный красный цветок. Оказалось, у него даже есть название: эпициклоида.
Только я хотел спросить, что это такое, как маленький обруч забрался внутрь большого и снова покатился по его окружности. Красная лампочка нарисовала ещё одну кривую. С берега объявили, что это гипоциклоида, и тогда только объяснили, что по-гречески "эпи" означает "над", а "гипо" "под". Ведь маленький обруч сперва катился снаружи, а потом - внутри большого!
Всё это было красиво, но непонятно - к чему? Однако капитан сказал, что линии, которые мы сегодня увидели, необходимы в технике. Инженеры без них как без рук. Циклоида используется и в автомобиле, и в токарном станке, и в часах, и уж обязательно в лебёдке, которая выбирает наш якорь... Словом, там, где нужно заставить вращаться вал. Тут-то и выручают зубчатые колёса - шестерёнки. Зубья одной шестерёнки попадают между зубьями другой, происходит сцепление. Одна шестерёнка заставляет вращаться другую, укреплённую на валу, а вал приводит в движение машину.
- Всё это понятно, - сказал Пи, - но при чём здесь циклоида?
- А при том, - пояснил капитан, - что очень часто изгиб зубца шестерёнки делается в форме циклоиды. Оттого соединения таких шестерёнок называются циклоидальными зацеплениями.
Мы с коком сейчас же захотели проверить, как шестерёнки зацепляются зубьями. Он растопырил пальцы, а я всунул между ними свои. Этого нам показалось мало.
Тогда, изображая шестерёнки, мы, стали кататься по палубе, налетели друг на друга, и получилось такое циклоидальное зацепление, что нас насилу расцепили.
СТОЛ НАХОДОК
25 нуляля
Целый день провели в бухте Чисел.
Признаюсь, с числами у меня нелады. То забуду при делении снести следующую цифру, особенно нуль, то никак не перемножу правильно семь и восемь - всё получается 58.
Но самое трудное - запомнить какое-нибудь большое число. У меня на числа очень плохая память, всегда я их забываю!
И что же вы думаете? Только мы сошли на берег, как у самой пристани увидели дом с такой вывеской:
СТОЛ НАХОДОК ЗАБЫТЫХ ЧИСЕЛ
Выходит, забытое число можно найти, как зонтик, оставленный в троллейбусе? А я как раз забыл номер своего телефона и решил зайти в стол находок. Кок сказал, что тоже забыл свой телефон, и мы пошли вместе.
Заведующий принял нас радушно и сразу же стал уверять, что нам нечего беспокоиться; если мы забыли важное число, он непременно его найдёт.
У него, оказывается, здесь хранятся все числа, какие есть на свете.
- Итак, что за приметы у вашего числа? - обратился он ко мне.
- Здравствуйте! Разве у чисел бывают приметы?
- А как же! - ответил Заведующий. - У чисел столько примет, свойств, столько неожиданных взаимоотношений, таинственных связей, что далеко не все из них разгаданы. Поэтому, прежде чем забыть какое-нибудь число, надо запомнить хотя бы несколько его примет.
Мы пообещали в следующий раз забывать числа осмотрительнее и попросили рассказать, какие же у чисел бывают приметы.
Заведующий выдвинул из шкафа ящичек и достал наугад карточку. На ней было написано: 284 130.
- Ух, какая огромная цифра! - выдохнул я. Заведующий ужаснулся:
- Что ты говоришь?! Разве это цифра? Это число! Цифры не могут быть огромными или маленькими. Они ведь всего-навсего знаки, которыми записывают числа. Как слово - буквами. Но, несмотря на то что цифр только десять, ими можно записать бесконечное множество чисел. Так вот, - продолжал он, число 284 130 записано шестью цифрами, поэтому оно ШЕСТИЗНАЧНОЕ. Значность - первая важная примета ЦЕЛОГО числа. А вы, надеюсь, уже поняли, что наше число-целое. Эта примета тоже немаловажная. Что ещё можно сказать о числе 284 130? Конечно, то, что оно ПОЛОЖИТЕЛЬНОЕ. Почему положительное? Да потому что оно больше нуля.
- Можно подумать, есть числа меньше нуля!
- Конечно, есть, - возразил Заведующий, и нетрудно догадаться, что их называют ОТРИЦАТЕЛЬНЫМИ.
Постойте, постойте! Это я уже слышал: про положительные и отрицательные числа и ещё про то, что нуль, как верный страж, стоит между ними, говорил Президент острова Нуль. Но я тогда не понял, что это за числа, которые меньше нуля. И неужели без них нельзя обойтись? Оказалось, никак нельзя!
- Без отрицательных чисел математики как без рук, - сказал Заведующий. - Попробуй положить на стол 3 яблока и отнять от них 5. Ничего не выйдет! С яблоками не выйдет, а с числами сколько угодно: 3 - 5 = - 2. Получилось отрицательное число: минус два!
Вот так фокус! Мы страшно удивились, но ещё больше удивился Заведующий.
- Вы что, никогда не видели термометра? - спросил он. - Представьте себе, что он показывает 3 градуса тепла (+3), а потом температура вдруг понизится на 5 градусов. Что вы тогда увидите на термометре?
- Два градуса мороза, - сказал Пи.
- Правильно, два градуса ниже нуля, то есть минус 2 градуса. Вот вы и вычли из трёх пять и получили минус два!
- Теперь понятно, - сказал Пи.
- А вот ещё один признак нашего числа, - продолжал Заведующий, - оно ДЕЙСТВИТЕЛЬНОЕ.
Ха! Выходит, есть и недействительные? Ну и чудак! Может, он...того? Но чудак посмотрел на нас вполне нормальными глазами и сказал, что смеяться нечего, потому что такие числа есть. Их называют МНИМЫМИ. Только он, к сожалению, не может сейчас объяснить, что это за числа. Да они нам пока и не понадобятся, потому что номера телефонов мнимыми не бывают.
Но это было не всё. У нашего числа выискался ещё один важный признак: оно РАЦИОНАЛЬНОЕ. Это значит, что его можно совершенно точно записать или отложить на линейке. И тут мы с коком сразу смекнули, что есть, стало быть, числа, которые точно записать нельзя. И не ошиблись: такие числа в самом деле есть, и называются они ИРРАЦИОНАЛЬНЫМИ. Их можно записать только приближённо. Вот, например, число "пи": оно приближённо равно трём целым и четырнадцати сотым.
Это-то мы знали. Но вот новость: выходит, мой друг Пи - иррациональное число! Век живи - век учись!
Итак, что же мы узнали о числе 284 130? Мы узнали, что оно шестизначное, целое, положительное, действительное, рациональное.
- Добавьте ещё, что оно ЧЁТНОЕ, - сказал Заведующий. - Видите, как много у него признаков. И всё-таки их недостаточно. Чтобы найти забытое число, нужно знать не только простейшие, но и особые его признаки - ну хотя бы сумму его цифр. Для нашего числа она равна 18 (2 + 8 + 4 + 1 + 3 + 0 = 18). Обратите также внимание на то, что число 284 130 - СОСТАВНОЕ: его можно разложить на множители. И тут я опять подумал, что если есть числа, которые разложить на множители можно, значит, есть числа, которые разложить на множители нельзя. И снова попал в самую точку. Почти. Потому что такие числа есть (их называют ПРОСТЫМИ), но они всё-таки делятся на единицу и на самих себя. А больше ни на что. Вот, например: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29... Конечно, это только первые простые числа, всего-то их бесконечное множество. Самое большое из найденных простых чисел записывается более чем тысячью тремястами знаков. С ума сойти! А какое следующее - неизвестно. Пока еще не вычислили. Впрочем...
Тут Заведующий посмотрел на нас, засмеялся и сказал, что нам в самый раз пойти отдохнуть. Тем более, что рабочий день его кончился. Мы поблагодарили его и пошли на Фрегат.
НОВЫЕ ПРИЗНАКИ
26 нуляля
Сегодня утром капитан сказал, что и этот день Фрегат простоит в бухте Чисел.
Мы с коком тотчас отправились на берег и сами не заметили, как снова очутились у стола находок. Заведующий, казалось, ничуть не удивился нашему приходу и тут же вынул карточку со знакомым нам уже числом 284 130.
- Вчера вы сказали, что это число составное, - вспомнил Пи. - Как это надо понимать?
- Потому что сразу видно, что это число ОБЯЗАТЕЛЬНО разделится и на 2, и на 3, и на 5, и на 6, и на 9, и на 10, и на 11!
Мы так и ахнули! Как он догадался?
А он вовсе и не догадывался, а знал признаки делимости на эти числа. Оказалось, что число 284 130 делится на 2 потому, что оно чётное. Чтобы узнать, делится ли число на 3 и на 9, надо узнать сумму его цифр. Если эта сумма делится на 3 и на 9, значит, на 3 и на 9 делится и само число. Сумма цифр нашего числа равна 18. А 18 делится и на 3, и на 9. Значит, на них же делится и наше число.
- Пойдём дальше, - продолжал Заведующий. - Раз наше число делится на 2 и на 3, оно, конечно, делится и на 6. Ведь 6 = 2 ? 3. А на 5 и на 10 оно делится потому, что оканчивается нулём. Как видите, ничего сложного здесь нет.
- Вы забыли про число 11, - напомнил Пи. - Какой признак делимости на него?
- Про 11 я действительно забыл, - смущённо улыбнулся Заведующий. Этот признак несложен. Чтобы узнать, делится ли число 284 130 на 11, я сложил его цифры через одну, - сперва те, что стоят на нечётных местах: 2 + 4 + 3 = 9, а затем те, что на чётных: 8 + 1 + 0 = 9. Как видите, обе суммы одинаковы, а это верный признак делимости на 11. А теперь, - Заведующий торжественно поднял палец, - я расскажу вам ещё о двух замечательных особенностях нашего числа. Обратите внимание на первые две его цифры: они образуют двухзначное число 28, а первые три цифры - трёхзначное число 284.
Каждое из этих чисел замечательно по-своему. Начнём с числа 28. Какие у него младшие делители? Это 1, 2, 4, 7 и 14. Сложите их.
Мы сложили, и что бы вы думали? Оказалось, сумма младших делителей числа 28 равна самому числу! 1+2+4+7+14 = 28.
Заведующий сказал, что такие числа называются СОВЕРШЕННЫМИ и что сейчас известно восемь совершенных чисел. Например, число 6. Оно тоже совершенное: сумма его младших делителей равна 6: 1 + 2 + 3 = 6.
Чудеса! А что происходит с числом 284?
- Тут чудеса другие, - сказал Заведующий. - Его младшие делители 1, 2, 4, 71, 142. Если мы их сложим, то получим в сумме...
- Число 220, - сосчитал я. - И никаких чудес! Заведующий усмехнулся.
- А чудеса всё-таки есть. Сложим теперь сумму младших делителей числа 220. Это 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110. Что у нас получится? Он победоносно откинулся на спинку стула, - У нас получится 284!
- Ну и что?
- Как - что? Да то, что между числами 220 и 284 существуют интересные взаимоотношения. Можно сказать, дружеские. Они обменялись суммой своих младших делителей. Потому-то их и называют ДРУЖЕСТВЕННЫМИ...
Интересно, сколько других признаков числа 284 130 мы узнали бы сегодня, если бы Заведующий не догадался, что и этих нам на первый раз вполне достаточно?
ПИСЬМО В БУТЫЛКЕ
27 нуляля
Сегодня Единица разрешил мне побыть с ним на капитанском мостике.
1 2 3 4 5 6 7 8 9 10