Избранная Уайлсом тактика обладала одним большим преимуществом.
Решающее значение имело то обстоятельство, что в методе Уайлса члены в E -рядах обладают естественным упорядочением, поэтому после того, как установлено соответствие между первыми членами (E 1=M 1), следующим шагом является установление соответствия между вторыми членами (E 2 = M 2), и т. д.
Именно такой естественный порядок был необходим Уайлсу, чтобы создать доказательство по индукции. Прежде всего Уайлсу было необходимо доказать, что первый элемент E -ряда можно поставить в соответствие первому элементу некоторого M -ряда. Затем ему было необходимо доказать, что если соответствие между первыми элементами рядов установлено, то оно будет установлено и между вторыми, третьими и т. д. элементами. Уайлсу было необходимо опрокинуть первую кость домино и доказать, что любое опрокинутое домино вызовет падение следующего домино.
Первый шаг в осуществлении этой программы был сделан, когда Уайлс понял всю мощь групп Галуа. Чтобы создать такую группу, можно было воспользоваться несколькими решениями уравнения, соответствующего эллиптической кривой. После анализа, на который ушло несколько месяцев, Уайлс доказал, что группы Галуа позволяют прийти к одному несомненному заключению: первый член любого E -ряда действительно может быть поставлен в соответствие с первым членом некоторого M -ряда. Благодаря теории Галуа, Уайлс сумел сделать первый шаг индукции. Следующий шаг требовал от Уайлса найти способ доказать, что если какой-то один член E -ряда поставлен в соответствие соответствующему члену M -ряда, то и следующий элемент E -ряда должен соответствовать следующему элементу M -ряда.
На преодоление первого этапа, Уайлсу понадобилось два года, и у него не было ни малейшего понятия о том, сколько времени потребуется, чтобы продолжить доказательство. Уайлс хорошо сознавал, какую проблему ему предстоит решить: «Вы можете спросить, как я мог неограниченно тратить время на проблему, которая могла просто оказаться неразрешимой. Ответ заключается в том, что мне очень нравилось работать над ней, я был очень увлечен. Мне нравилось испытывать свой разум. Кроме того, я знал, что та математика, с помощью которой я намеревался атаковать гипотезу Таниямы-Шимуры, позволит получить какой-нибудь интересный результат, даже если ее окажется недостаточно для доказательства гипотезы Таниямы-Шимуры. Я не собирался заниматься безнадежным делом, у меня на вооружении была заведомо превосходная математика. Разумеется, существовала ненулевая вероятность того, что я так и не сумею найти доказательство Великой теоремы Ферма, но я никогда не думал, что напрасно трачу время».
«Доказана ли Великая теорема Ферма?»
Был сделан лишь первый шаг на пути к доказательству гипотезы Таниямы-Шимуры, но избранная Уайлсом стратегия была блестящим математическим прорывом, результатом, который заслуживал публикации. Но в силу обета молчания, наложенного Уайлсом самим на себя, он не мог поведать о полученном результате остальному миру и не имел ни малейшего представления о том, кто еще мог совершить столь же значительный прорыв.
Уайлс вспоминает о своем философском отношении к любому потенциальному сопернику: «Никто не захочет затратить годы на доказательство чего-то и обнаружить, что кому-то другому удалось найти доказательство несколькими неделями раньше. Но, как ни странно, поскольку я пытался решить проблему, которая по существу считалась неразрешимой, я не очень опасался соперников. Я просто не надеялся, что мне или кому-нибудь другому придет в голову идея, которая приведет к доказательству».
8 марта 1988 года Уайлс испытал шок, увидев на первых полосах газет набранные крупным шрифтом заголовки, гласившие: «Великая теорема Ферма доказана». Газеты «Washington Post» и «New York Times» сообщали, что тридцативосьмилетний Иоичи Мияока из токийского Метрополитен университета решил самую трудную математическую проблему в мире. Пока Мияока еще не опубликовал свое доказательство, но в общих чертах изложил его ход на семинаре в Институте Макса Планка по математике в Бонне. Дон Цагир, присутствовавший на докладе Мияоки, выразил оптимизм математического сообщества в следующих словах: «Представленное Мияокой доказательство необычайно интересно, и некоторые математики полагают, что оно с высокой вероятностью окажется правильным. Полной уверенности еще нет, но пока доказательство выглядит весьма обнадеживающим».
Выступая с докладом на семинаре в Бонне, Мияока рассказал о своем подходе к решению проблемы, которую он рассматривал с совершенно иной, алгебро-геометрической, точки зрения. За последние десятилетия геометры достигли глубокого и тонкого понимания математических объектов, в частности, свойств поверхностей. В 70-е годы российский математик С. Аракелов попытался установить параллели между проблемами алгебраической геометрии и проблемами теории чисел. Это было одно из направлений программы Ленглендса, и математики надеялись, что нерешенные проблемы теории чисел удастся решить, изучая соответствующие проблемы геометрии, которые также еще оставались нерешенными. Такая программа была известна под названием философии параллелизма. Те алгебраические геометры, которые пытались решать проблемы теории чисел, получили название «арифметических алгебраических геометров». В 1983 году они возвестили о своей первой значительной победе, когда Герд Фалтингс из Принстонского Института высших исследований внес существенный вклад в понимание теоремы Ферма. Напомним, что, по утверждению Ферма, уравнение
xn + yn = zn
при n б?льших 2 не имеет решений в целых числах. Фалтингс решил, что ему удалось продвинуться в доказательстве Великой теоремы Ферма с помощью изучения геометрических поверхностей, связанных с различными значениями n . Поверхности, связанные с уравнениями Ферма при различных значениях n , отличаются друг от друга, но обладают одним общим свойством — у них всех имеются сквозные отверстия, или, попросту говоря, дыры. Эти поверхности четырехмерны, как и графики модулярных форм. Двумерные сечения двух поверхностей представлены на рис. 23. Поверхности, связанные с уравнением Ферма, выглядят аналогично. Чем больше значение n в уравнении, тем больше дыр в соответствующей поверхности.
Рис. 23. Эти две поверхности получены с использованием компьютерной программы «Mathematica». Каждая из них представляет геометрическое место точек удовлетворяющих уравнению xn + yn = zn (для поверхности слева n =3, для поверхности справа n =5). Переменные x и y здесь считаются комплексными
Фалтингсу удалось доказать, что, поскольку такие поверхности всегда имеют несколько дыр, связанное с ними уравнение Ферма могло бы иметь лишь конечное множество решений в целых числах. Число решений могло быть любым — от нуля, как предполагал Ферма, до миллиона или миллиарда. Таким образом, Фалтингс не доказал Великую теорему Ферма, но по крайней мере сумел отвергнуть возможность существования у уравнения Ферма бесконечно многих решений.
Пятью годами позже Мияока сообщил, что ему удалось продвинуться еще на один шаг. Ему тогда было двадцать с небольшим лет. Мияока сформулировал гипотезу относительно некоторого неравенства. Стало ясно, что доказательство его геометрической гипотезы означало бы доказательство того, что число решений уравнения Ферма не просто конечно, а равно нулю. Подход Мияоки был аналогичен подходу Уайлса в том, что они оба пытались доказать Великую теорему Ферма, связывая ее с фундаментальной гипотезой в другой области математики. У Мияоки это была алгебраическая геометрия, для Уайлса путь к доказательству лежал через эллиптические кривые и модулярные формы. К великому огорчению Уайлса, он все еще бился над доказательством гипотезы Таниямы-Шимуры, когда Мияока заявил о том, что располагает полным доказательством собственной гипотезы и, следовательно, Великой теоремы Ферма.
Через две недели после своего выступления в Бонне Мияока опубликовал пять страниц вычислений, составлявших суть его доказательства, и началась тщательнейшая проверка. Специалисты по теории чисел и алгебраической геометрии во всех странах мира изучали, строка за строкой, опубликованные вычисления. Через несколько дней математики обнаружили в доказательстве одно противоречие, которое не могло не вызывать беспокойства. Одна из частей работы Мияоки приводила к утверждению из теории чисел, из которого, при переводе на язык алгебраической геометрии, получалось утверждение, противоречившее результату, полученному несколькими годами раньше. И хотя это не обязательно обесценивало все доказательство Мияоки, обнаруженное противоречие не вписывалось в философию параллелизма между теорией чисел и геометрией.
Еще через две недели Герд Фалтингс, проложивший путь Мияоке, объявил о том, что обнаружил точную причину кажущегося нарушения параллелизма — пробел в рассуждениях. Японский математик был геометром и при переводе своих идей на менее знакомую территорию теории чисел не был абсолютно строг. Армия специалистов по теории чисел предприняла отчаянные усилия залатать прореху в доказательстве Мияоки, но тщетно. Через два месяца после того, как Мияока заявил о том, что располагает полным доказательством Великой теоремы Ферма, математическое сообщество пришло к единодушному заключению: доказательство Мияоки обречено на провал.
Как и в случае прежних несостоявшихся доказательств, Мияоке удалось получить немало интересных результатов. Отдельные фрагменты его доказательства заслуживали внимания как весьма остроумные приложения геометрии к теории чисел, и в последующие годы другие математики воспользовались ими для доказательства некоторых теорем, но доказать Великую теорему Ферма этим путем не удалось никому.
Шумиха по поводу Великой теоремы Ферма вскоре утихла, и газеты поместили краткие заметки, в которых говорилось, что трехсотлетняя головоломка по-прежнему остается нерешенной. На стене станции нью-йоркской подземки на Восьмой стрит появилась следующая надпись, несомненно, вдохновленная публикациями в прессе по поводу Великой теоремы Ферма: «Уравнение xn + yn = zn не имеет решений. Я нашел поистине удивительное доказательство этого факта, но не могу записать его здесь, так как пришел мой поезд».
В потемках
Уайлс, о котором мир тогда еще ничего не знал, с облегчением вздохнул. Великая теорема Ферма по-прежнему оставалась непобежденной, и он мог продолжать сражаться с ней, надеясь доказать ее с помощью гипотезы Таниямы-Шимуры. «Много времени я проводил за письменным столом. Иногда мне удавалось свести общую проблему к чему-нибудь весьма конкретному — то это был многообещающий замысел, который мог привести к доказательству, то какая-нибудь деталь, показавшаяся мне странной, то статья, в которой я не мог разобраться. Если мне в голову приходила какая-нибудь идея, которая неотступно преследовала меня настолько, что я не мог ни писать, ни читать, ни думать о чем-нибудь другом, то я отправлялся на прогулку к озеру. Я обнаружил, что, гуляя, могу полностью сосредоточиться на каком-нибудь очень конкретном аспекте проблемы, абстрагируясь от всего остального. У меня с собой всегда был наготове листок бумаги и карандаш, и если мне в голову приходила какая-нибудь идея, то я всегда мог сесть на скамейку и немедля записать ее».
Через три года непрекращающихся усилий, Уайлсу удалось совершить ряд прорывов. Он применил к эллиптическим кривым группы Галуа, рассматривая «образы» этих кривых в пространствах над арифметикой вычетов по модулю степени простого числа. Тем самым, ему удалось сделать первый шаг рассуждения по индукции. Уайлс опрокинул первое домино и теперь пытался найти метод, который мог бы помочь опрокинуть все остальные домино. На первый взгляд могло бы показаться, что это — естественный путь к доказательству, но для того, чтобы преодолеть пройденную часть пути, от Уайлса потребовалась необычайная решимость, чтобы не поддаться сомнениям в периоды неуверенности в себе.
Уайлс сравнивает математическое исследование с блужданием впотьмах в незнакомом доме. «Вы входите в первую комнату. Темно. Кромешная тьма. Вы то и дело натыкаетесь на мебель, но постепенно узнаете, где что стоит. Наконец, месяцев через шесть или около того, вы нащупываете выключатель, и внезапно становится светло. Вы отчетливо видите, где вы. Затем вы переходите в следующую комнату и проводите там шесть месяцев впотьмах. Так же обстоит дело и с прорывами в решении проблемы. Иногда озарения происходят мгновенно, иногда в течение одного-двух дней. Но в любом случае, они являются кульминацией предшествующих им многомесячных блужданий впотьмах. Без таких блужданий никаких озарений просто не было бы».
В 1990 году Уайлс оказался в самой темной из комнат. На ее обследование у него ушло почти два года. Перепробовав все известные к тому времени методы и подходы, о которых говорилось в опубликованных работах, Уайлс обнаружил, что все они не годятся для решения его проблемы. «Я был убежден, что стою на правильном пути, хотя это отнюдь не означало, что мне непременно удастся достичь поставленной цели. Методы, необходимые для решения интересовавшей меня проблемы, могли оказаться лежащими за пределами современной математики. Могло случиться и так, что методы, необходимые мне для завершения доказательства, будут созданы лет через сто. Одним словом, даже если я был на правильном пути, вполне могло оказаться, что я живу не в том столетии».
Уайлс не пал духом и упорно продолжал работать над проблемой и весь следующий год. Он начал изучать подход, известный под названием «теория Ивасавы». Эта теория представляла собой метод анализа эллиптических кривых, который Уайлс изучал в свои аспирантские годы в Кембридже под руководством Джона Коутса. Хотя теория Ивасавы в своем первоначальном виде была неприменима к интересовавшей Уайлса проблеме, но он надеялся, что ему удастся нужным образом модифицировать ее.
После начального прорыва с помощью групп Галуа Уайлс стал испытывать все большее разочарование. Когда спасительный выход из создавшегося затруднения казался особенно далеким, Уайлс черпал силы из общения с семьей. С тех пор, как он начал работу над доказательством Великой теоремы Ферма в 1986 году, у него родилось двое детей. «Я отдыхал только в кругу моих детей. Маленькие дети просто ничего не знают о Великой теореме Ферма, она им не интересна, они просто хотят услышать от вас сказку и не дадут вам заниматься ничем другим».
Метод Колывагина-Флаха
К лету 1991 года Уайлс проиграл сражение: теорию Ивасавы не удалось приспособить к решению проблемы. Он снова обратился к научным журналам и монографиям, но все же не смог найти альтернативный метод, который позволил бы ему осуществить необходимый прорыв. Последние пять лет Уайлс жил в Принстоне как отшельник, но теперь он решил, что настало время вернуться в круговорот научной жизни и познакомиться с последними математическими слухами. Возможно, кто-нибудь где-нибудь работает над каким-нибудь новым методом, который по тем или иным причинам не был опубликован. Уайлс отправился в Бостон, чтобы принять участие в конференции по эллиптическим кривым, где он надеялся встретить основных действующих лиц современного этапа развития этой теории.
Коллеги со всех концов мира были рады приветствовать Уайлса после столь долгого отсутствия (напомним, что Уайлс по собственной воле воздерживался от участия в непрекращающейся череде конференций, семинаров и симпозиумов). Никто из них не подозревал, что Уайлс работает над доказательством Великой теоремы Ферма, а Уайлс тщательно соблюдал конспирацию и не выдал себя ни единым словом. Участники конференции не подозревали об истинных мотивах его интереса, когда он расспрашивал их о последних новостях относительно эллиптических кривых. Первоначально расспросы не давали ничего существенного, но встреча Уайлса с его бывшим научным руководителем Джоном Коутсом оказалась весьма плодотворной: «В беседе со мной Коутс упомянул о том, что один из его аспирантов по имени Матиус Флах пишет прекрасную статью, в которой анализирует эллиптические кривые. Свою работу Флах основывал на методе, недавно предложенном Колывагиным. Метод Колывагина был словно специально придуман для моей проблемы. Казалось, это было именно то, что мне нужно, хотя по собственному опыту я уже знал, что так называемый метод Колывагина-Флаха придется усовершенствовать. Я полностью отложил в сторону старый подход и стал день и ночь работать над усовершенствованием этого метода».
Профессор Колывагин и Матиус Флах разработали необычайно мощный математический метод, но ни тот, ни другой не поняли, что Уайлс вознамерился использовать их метод при решении самой трудной проблемы в мире.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Решающее значение имело то обстоятельство, что в методе Уайлса члены в E -рядах обладают естественным упорядочением, поэтому после того, как установлено соответствие между первыми членами (E 1=M 1), следующим шагом является установление соответствия между вторыми членами (E 2 = M 2), и т. д.
Именно такой естественный порядок был необходим Уайлсу, чтобы создать доказательство по индукции. Прежде всего Уайлсу было необходимо доказать, что первый элемент E -ряда можно поставить в соответствие первому элементу некоторого M -ряда. Затем ему было необходимо доказать, что если соответствие между первыми элементами рядов установлено, то оно будет установлено и между вторыми, третьими и т. д. элементами. Уайлсу было необходимо опрокинуть первую кость домино и доказать, что любое опрокинутое домино вызовет падение следующего домино.
Первый шаг в осуществлении этой программы был сделан, когда Уайлс понял всю мощь групп Галуа. Чтобы создать такую группу, можно было воспользоваться несколькими решениями уравнения, соответствующего эллиптической кривой. После анализа, на который ушло несколько месяцев, Уайлс доказал, что группы Галуа позволяют прийти к одному несомненному заключению: первый член любого E -ряда действительно может быть поставлен в соответствие с первым членом некоторого M -ряда. Благодаря теории Галуа, Уайлс сумел сделать первый шаг индукции. Следующий шаг требовал от Уайлса найти способ доказать, что если какой-то один член E -ряда поставлен в соответствие соответствующему члену M -ряда, то и следующий элемент E -ряда должен соответствовать следующему элементу M -ряда.
На преодоление первого этапа, Уайлсу понадобилось два года, и у него не было ни малейшего понятия о том, сколько времени потребуется, чтобы продолжить доказательство. Уайлс хорошо сознавал, какую проблему ему предстоит решить: «Вы можете спросить, как я мог неограниченно тратить время на проблему, которая могла просто оказаться неразрешимой. Ответ заключается в том, что мне очень нравилось работать над ней, я был очень увлечен. Мне нравилось испытывать свой разум. Кроме того, я знал, что та математика, с помощью которой я намеревался атаковать гипотезу Таниямы-Шимуры, позволит получить какой-нибудь интересный результат, даже если ее окажется недостаточно для доказательства гипотезы Таниямы-Шимуры. Я не собирался заниматься безнадежным делом, у меня на вооружении была заведомо превосходная математика. Разумеется, существовала ненулевая вероятность того, что я так и не сумею найти доказательство Великой теоремы Ферма, но я никогда не думал, что напрасно трачу время».
«Доказана ли Великая теорема Ферма?»
Был сделан лишь первый шаг на пути к доказательству гипотезы Таниямы-Шимуры, но избранная Уайлсом стратегия была блестящим математическим прорывом, результатом, который заслуживал публикации. Но в силу обета молчания, наложенного Уайлсом самим на себя, он не мог поведать о полученном результате остальному миру и не имел ни малейшего представления о том, кто еще мог совершить столь же значительный прорыв.
Уайлс вспоминает о своем философском отношении к любому потенциальному сопернику: «Никто не захочет затратить годы на доказательство чего-то и обнаружить, что кому-то другому удалось найти доказательство несколькими неделями раньше. Но, как ни странно, поскольку я пытался решить проблему, которая по существу считалась неразрешимой, я не очень опасался соперников. Я просто не надеялся, что мне или кому-нибудь другому придет в голову идея, которая приведет к доказательству».
8 марта 1988 года Уайлс испытал шок, увидев на первых полосах газет набранные крупным шрифтом заголовки, гласившие: «Великая теорема Ферма доказана». Газеты «Washington Post» и «New York Times» сообщали, что тридцативосьмилетний Иоичи Мияока из токийского Метрополитен университета решил самую трудную математическую проблему в мире. Пока Мияока еще не опубликовал свое доказательство, но в общих чертах изложил его ход на семинаре в Институте Макса Планка по математике в Бонне. Дон Цагир, присутствовавший на докладе Мияоки, выразил оптимизм математического сообщества в следующих словах: «Представленное Мияокой доказательство необычайно интересно, и некоторые математики полагают, что оно с высокой вероятностью окажется правильным. Полной уверенности еще нет, но пока доказательство выглядит весьма обнадеживающим».
Выступая с докладом на семинаре в Бонне, Мияока рассказал о своем подходе к решению проблемы, которую он рассматривал с совершенно иной, алгебро-геометрической, точки зрения. За последние десятилетия геометры достигли глубокого и тонкого понимания математических объектов, в частности, свойств поверхностей. В 70-е годы российский математик С. Аракелов попытался установить параллели между проблемами алгебраической геометрии и проблемами теории чисел. Это было одно из направлений программы Ленглендса, и математики надеялись, что нерешенные проблемы теории чисел удастся решить, изучая соответствующие проблемы геометрии, которые также еще оставались нерешенными. Такая программа была известна под названием философии параллелизма. Те алгебраические геометры, которые пытались решать проблемы теории чисел, получили название «арифметических алгебраических геометров». В 1983 году они возвестили о своей первой значительной победе, когда Герд Фалтингс из Принстонского Института высших исследований внес существенный вклад в понимание теоремы Ферма. Напомним, что, по утверждению Ферма, уравнение
xn + yn = zn
при n б?льших 2 не имеет решений в целых числах. Фалтингс решил, что ему удалось продвинуться в доказательстве Великой теоремы Ферма с помощью изучения геометрических поверхностей, связанных с различными значениями n . Поверхности, связанные с уравнениями Ферма при различных значениях n , отличаются друг от друга, но обладают одним общим свойством — у них всех имеются сквозные отверстия, или, попросту говоря, дыры. Эти поверхности четырехмерны, как и графики модулярных форм. Двумерные сечения двух поверхностей представлены на рис. 23. Поверхности, связанные с уравнением Ферма, выглядят аналогично. Чем больше значение n в уравнении, тем больше дыр в соответствующей поверхности.
Рис. 23. Эти две поверхности получены с использованием компьютерной программы «Mathematica». Каждая из них представляет геометрическое место точек удовлетворяющих уравнению xn + yn = zn (для поверхности слева n =3, для поверхности справа n =5). Переменные x и y здесь считаются комплексными
Фалтингсу удалось доказать, что, поскольку такие поверхности всегда имеют несколько дыр, связанное с ними уравнение Ферма могло бы иметь лишь конечное множество решений в целых числах. Число решений могло быть любым — от нуля, как предполагал Ферма, до миллиона или миллиарда. Таким образом, Фалтингс не доказал Великую теорему Ферма, но по крайней мере сумел отвергнуть возможность существования у уравнения Ферма бесконечно многих решений.
Пятью годами позже Мияока сообщил, что ему удалось продвинуться еще на один шаг. Ему тогда было двадцать с небольшим лет. Мияока сформулировал гипотезу относительно некоторого неравенства. Стало ясно, что доказательство его геометрической гипотезы означало бы доказательство того, что число решений уравнения Ферма не просто конечно, а равно нулю. Подход Мияоки был аналогичен подходу Уайлса в том, что они оба пытались доказать Великую теорему Ферма, связывая ее с фундаментальной гипотезой в другой области математики. У Мияоки это была алгебраическая геометрия, для Уайлса путь к доказательству лежал через эллиптические кривые и модулярные формы. К великому огорчению Уайлса, он все еще бился над доказательством гипотезы Таниямы-Шимуры, когда Мияока заявил о том, что располагает полным доказательством собственной гипотезы и, следовательно, Великой теоремы Ферма.
Через две недели после своего выступления в Бонне Мияока опубликовал пять страниц вычислений, составлявших суть его доказательства, и началась тщательнейшая проверка. Специалисты по теории чисел и алгебраической геометрии во всех странах мира изучали, строка за строкой, опубликованные вычисления. Через несколько дней математики обнаружили в доказательстве одно противоречие, которое не могло не вызывать беспокойства. Одна из частей работы Мияоки приводила к утверждению из теории чисел, из которого, при переводе на язык алгебраической геометрии, получалось утверждение, противоречившее результату, полученному несколькими годами раньше. И хотя это не обязательно обесценивало все доказательство Мияоки, обнаруженное противоречие не вписывалось в философию параллелизма между теорией чисел и геометрией.
Еще через две недели Герд Фалтингс, проложивший путь Мияоке, объявил о том, что обнаружил точную причину кажущегося нарушения параллелизма — пробел в рассуждениях. Японский математик был геометром и при переводе своих идей на менее знакомую территорию теории чисел не был абсолютно строг. Армия специалистов по теории чисел предприняла отчаянные усилия залатать прореху в доказательстве Мияоки, но тщетно. Через два месяца после того, как Мияока заявил о том, что располагает полным доказательством Великой теоремы Ферма, математическое сообщество пришло к единодушному заключению: доказательство Мияоки обречено на провал.
Как и в случае прежних несостоявшихся доказательств, Мияоке удалось получить немало интересных результатов. Отдельные фрагменты его доказательства заслуживали внимания как весьма остроумные приложения геометрии к теории чисел, и в последующие годы другие математики воспользовались ими для доказательства некоторых теорем, но доказать Великую теорему Ферма этим путем не удалось никому.
Шумиха по поводу Великой теоремы Ферма вскоре утихла, и газеты поместили краткие заметки, в которых говорилось, что трехсотлетняя головоломка по-прежнему остается нерешенной. На стене станции нью-йоркской подземки на Восьмой стрит появилась следующая надпись, несомненно, вдохновленная публикациями в прессе по поводу Великой теоремы Ферма: «Уравнение xn + yn = zn не имеет решений. Я нашел поистине удивительное доказательство этого факта, но не могу записать его здесь, так как пришел мой поезд».
В потемках
Уайлс, о котором мир тогда еще ничего не знал, с облегчением вздохнул. Великая теорема Ферма по-прежнему оставалась непобежденной, и он мог продолжать сражаться с ней, надеясь доказать ее с помощью гипотезы Таниямы-Шимуры. «Много времени я проводил за письменным столом. Иногда мне удавалось свести общую проблему к чему-нибудь весьма конкретному — то это был многообещающий замысел, который мог привести к доказательству, то какая-нибудь деталь, показавшаяся мне странной, то статья, в которой я не мог разобраться. Если мне в голову приходила какая-нибудь идея, которая неотступно преследовала меня настолько, что я не мог ни писать, ни читать, ни думать о чем-нибудь другом, то я отправлялся на прогулку к озеру. Я обнаружил, что, гуляя, могу полностью сосредоточиться на каком-нибудь очень конкретном аспекте проблемы, абстрагируясь от всего остального. У меня с собой всегда был наготове листок бумаги и карандаш, и если мне в голову приходила какая-нибудь идея, то я всегда мог сесть на скамейку и немедля записать ее».
Через три года непрекращающихся усилий, Уайлсу удалось совершить ряд прорывов. Он применил к эллиптическим кривым группы Галуа, рассматривая «образы» этих кривых в пространствах над арифметикой вычетов по модулю степени простого числа. Тем самым, ему удалось сделать первый шаг рассуждения по индукции. Уайлс опрокинул первое домино и теперь пытался найти метод, который мог бы помочь опрокинуть все остальные домино. На первый взгляд могло бы показаться, что это — естественный путь к доказательству, но для того, чтобы преодолеть пройденную часть пути, от Уайлса потребовалась необычайная решимость, чтобы не поддаться сомнениям в периоды неуверенности в себе.
Уайлс сравнивает математическое исследование с блужданием впотьмах в незнакомом доме. «Вы входите в первую комнату. Темно. Кромешная тьма. Вы то и дело натыкаетесь на мебель, но постепенно узнаете, где что стоит. Наконец, месяцев через шесть или около того, вы нащупываете выключатель, и внезапно становится светло. Вы отчетливо видите, где вы. Затем вы переходите в следующую комнату и проводите там шесть месяцев впотьмах. Так же обстоит дело и с прорывами в решении проблемы. Иногда озарения происходят мгновенно, иногда в течение одного-двух дней. Но в любом случае, они являются кульминацией предшествующих им многомесячных блужданий впотьмах. Без таких блужданий никаких озарений просто не было бы».
В 1990 году Уайлс оказался в самой темной из комнат. На ее обследование у него ушло почти два года. Перепробовав все известные к тому времени методы и подходы, о которых говорилось в опубликованных работах, Уайлс обнаружил, что все они не годятся для решения его проблемы. «Я был убежден, что стою на правильном пути, хотя это отнюдь не означало, что мне непременно удастся достичь поставленной цели. Методы, необходимые для решения интересовавшей меня проблемы, могли оказаться лежащими за пределами современной математики. Могло случиться и так, что методы, необходимые мне для завершения доказательства, будут созданы лет через сто. Одним словом, даже если я был на правильном пути, вполне могло оказаться, что я живу не в том столетии».
Уайлс не пал духом и упорно продолжал работать над проблемой и весь следующий год. Он начал изучать подход, известный под названием «теория Ивасавы». Эта теория представляла собой метод анализа эллиптических кривых, который Уайлс изучал в свои аспирантские годы в Кембридже под руководством Джона Коутса. Хотя теория Ивасавы в своем первоначальном виде была неприменима к интересовавшей Уайлса проблеме, но он надеялся, что ему удастся нужным образом модифицировать ее.
После начального прорыва с помощью групп Галуа Уайлс стал испытывать все большее разочарование. Когда спасительный выход из создавшегося затруднения казался особенно далеким, Уайлс черпал силы из общения с семьей. С тех пор, как он начал работу над доказательством Великой теоремы Ферма в 1986 году, у него родилось двое детей. «Я отдыхал только в кругу моих детей. Маленькие дети просто ничего не знают о Великой теореме Ферма, она им не интересна, они просто хотят услышать от вас сказку и не дадут вам заниматься ничем другим».
Метод Колывагина-Флаха
К лету 1991 года Уайлс проиграл сражение: теорию Ивасавы не удалось приспособить к решению проблемы. Он снова обратился к научным журналам и монографиям, но все же не смог найти альтернативный метод, который позволил бы ему осуществить необходимый прорыв. Последние пять лет Уайлс жил в Принстоне как отшельник, но теперь он решил, что настало время вернуться в круговорот научной жизни и познакомиться с последними математическими слухами. Возможно, кто-нибудь где-нибудь работает над каким-нибудь новым методом, который по тем или иным причинам не был опубликован. Уайлс отправился в Бостон, чтобы принять участие в конференции по эллиптическим кривым, где он надеялся встретить основных действующих лиц современного этапа развития этой теории.
Коллеги со всех концов мира были рады приветствовать Уайлса после столь долгого отсутствия (напомним, что Уайлс по собственной воле воздерживался от участия в непрекращающейся череде конференций, семинаров и симпозиумов). Никто из них не подозревал, что Уайлс работает над доказательством Великой теоремы Ферма, а Уайлс тщательно соблюдал конспирацию и не выдал себя ни единым словом. Участники конференции не подозревали об истинных мотивах его интереса, когда он расспрашивал их о последних новостях относительно эллиптических кривых. Первоначально расспросы не давали ничего существенного, но встреча Уайлса с его бывшим научным руководителем Джоном Коутсом оказалась весьма плодотворной: «В беседе со мной Коутс упомянул о том, что один из его аспирантов по имени Матиус Флах пишет прекрасную статью, в которой анализирует эллиптические кривые. Свою работу Флах основывал на методе, недавно предложенном Колывагиным. Метод Колывагина был словно специально придуман для моей проблемы. Казалось, это было именно то, что мне нужно, хотя по собственному опыту я уже знал, что так называемый метод Колывагина-Флаха придется усовершенствовать. Я полностью отложил в сторону старый подход и стал день и ночь работать над усовершенствованием этого метода».
Профессор Колывагин и Матиус Флах разработали необычайно мощный математический метод, но ни тот, ни другой не поняли, что Уайлс вознамерился использовать их метод при решении самой трудной проблемы в мире.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36