А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

На рис. 21 вы видите работу Эшера «Предельный круг. IV», на которой гиперболический мир втиснут в двумерную страницу. В истинно гиперболическом мире все летучие мыши и ангелы были бы одного размера, а повторы указывают на высокий уровень симметрии. Хотя некоторая симметрия ощутима и на рисунке, по мере продвижения к краю картины искажения усиливаются.

Рис. 21. «Предельный круг. IV» Морица Эшера содержит некоторые элементы симметрии модулярных форм
Модулярные формы появляются в различных обличьях, но каждую из форм можно представить в виде бесконечной суммы слагаемых специального вида, которые и отличают одну форму от другой. Эти бесконечные ряды, с помощью которых модулярная форма задается однозначно, называют модулярными рядами, или M -рядами.
Подобно тому, как E -ряды служат своего рода ДНК для эллиптических кривых, M -ряды играют роль ДНК для модулярных форм. Изменяя слагаемые M -ряда можно породить совершенно другую, но столь же симметричную, модулярную форму или полностью разрушить симметрию и создать новый объект, который не является модулярной формой. Если слагаемые выбраны произвольно, то построенный объект скорее всего будет обладать малой симметрией или даже будет полностью асимметричным.
Модулярные формы сами по себе играют весьма важную роль в математике. Они никак не связаны с предметом исследований Уайлса в Кембридже — эллиптическими кривыми. Модулярная форма — объект необычайно сложный, открытый только в XIX веке и ставший предметом пристального изучения главным образом из-за его симметрии. Кубические уравнения, соответствующие эллиптическим кривым, были известны с античных времен и не были никак связаны с симметрией. Модулярные формы и эллиптические кривые обитают в совершенно различных областях математического мира, и никому и в голову не приходило, что между ними существует какая-нибудь связь. Поэтому Танияма и Шимура повергли математическое сообщество в состояние шока своей гипотезой о том, что эллиптические кривые и модулярные формы по существу представляют собой одно и то же.
Желаемое принимается за действительное
В сентябре 1955 года в Токио состоялся международный симпозиум. Для молодых японских математиков это была уникальная возможность продемонстрировать остальному миру свои результаты. Они распространили среди участников симпозиума подборку из тридцати шести задач, связанных с той проблемой, над которой они работали, предпослав задачам следующее скромное введение: «Некоторые нерешенные математические задачи. Никакого основательного предварительного исследования не проводилось. Некоторые из предлагаемых задач могут быть тривиальными или уже решенными. Обращаемся к участникам семинара с просьбой прокомментировать любые из них».
Четыре задачи были предложены Таниямой и указывали на любопытную связь между модулярными формами и эллиптическими уравнениями. Эти невинные задачи в конце концов привели к перевороту в теории чисел. Танияма смог вычислить несколько первых членов M -ряда некоторой модулярной формы и понял, что эти члены совпадают с членами E -ряда хорошо известной эллиптической кривой. Танияма вычислил еще несколько членов каждого ряда, и M -ряд модулярной формы и E -ряд эллиптической кривой полностью совпали.

Ютака Танияма (крайний слева) и Горо Шимура (крайний справа) на Международном симпозиуме в Токио (1955)
Это открытие было поразительным, потому что не было никакой видимой причины, по которой модулярную форму можно было связать с эллиптической кривой. Однако, математические ДНК (E- и M -ряды), составляющие самую сущность обоих математических объектов, оказались тождественными. Открытие Таниямы было глубоким по двум причинам. Во-первых, оно наводило на мысль о существовании фундаментальной взаимосвязи между модулярными формами и эллиптическими кривыми — разными объектами математического мира. Во-вторых, оно означало, что математикам, которые уже знали M -ряд модулярной формы, нет необходимости вычислять E -ряд для соответствующей эллиптической кривой, поскольку он в точности совпадает с M -рядом.
Установление взаимосвязи между, казалось бы, различными объектами чрезвычайно плодотворно не только в математике, но и в любой науке. Такая взаимосвязь указывает на какой-то глубокий принцип, лежащий в основе обоих объектов и позволяющий глубже понять их. Например, первоначально физики рассматривали электричество и магнетизм как совершенно не связанные между собой явления, а в XIX веке теоретики и экспериментаторы поняли, что электричество и магнетизм тесно связаны между собой. В результате было достигнуто более глубокое понимание и электричества, и магнетизма. Электрические токи порождают магнитные поля, а магниты могут индуцировать электричество в проводниках, находящихся вблизи магнитов. Это привело к изобретению динамомашин и электромоторов. В конце концов было открыто, что свет представляет собой результат согласованных гармонических колебаний магнитного и электрического полей.
Танияма исследовал несколько других модулярных форм, и в каждом случае M -ряд в точности совпадал с E -рядом эллиптической кривой. Танияма начал размышлять над тем, не может ли каждая модулярная форма находиться в соответствии с некоторым кубическим уравнением. Может быть, у каждой модулярной формы есть такая же ДНК, как у некоторой эллиптической кривой? Именно с этой гипотезой и были связаны задачи, которые Танияма предложил вниманию участников симпозиума.
Идея о том, что каждая эллиптическая кривая связана с какой-то модулярной формой, была настолько необычна, что те, кому довелось взглянуть на задачи Таниямы, считали их не более чем забавным наблюдением. Разумеется, Танияма продемонстрировал, что несколько эллиптических кривых можно поставить в соответствие определенным модулярным формам, но участники семинара сочли, что это не более чем совпадение. По их мнению, гипотеза Таниямы о существовании какой-то более общей и универсальной взаимосвязи не имела под собой достаточного основания. Она опиралась не столько на факты, сколько на интуицию.
Единственным союзником Таниямы был Шимура, твердо веривший в силу и глубину идей своего друга. После симпозиума он стал работать вместе с Таниямой, стремясь довести его гипотезу до такого уровня, на котором остальной мир уже не сможет игнорировать полученные ими результаты. Шимура хотел найти новые факты, подтверждающие существование взаимосвязи между модулярными формами и эллиптическими кривыми. Их сотрудничество временно приостановилось в 1957 году, когда Шимура был приглашен в Принстонский институт высших исследований. По истечении двух лет работы в Америке в качестве приглашенного профессора Шимура намеревался возобновить совместную работу с Таниямой, но этим планам не суждено было сбыться. 17 ноября 1958 года Ютака Танияма покончил жизнь самоубийством.
Смерть гения
Шимура все еще хранит ту открытку, которую Танияма послал ему в ответ на просьбу вернуть том журнала «Mathematische Annalen». Он также хранит письмо, которое Танияма прислал ему, когда он находился в Принстоне. В письме не было ни малейшего намека на то, что произошло всего лишь двумя месяцами позднее. До сего дня Шимура не может понять, что толкнуло Танияму на самоубийство. «Я был очень озадачен. Озадачен — наиболее точное слово. Разумеется, я был очень опечален. Все это было так неожиданно. Я получил от него письмо в сентябре, а погиб он в начале ноября. В голове у меня это просто не укладывается. Разумеется, позднее до меня доходили разные слухи, и я пытался как-то примириться с его смертью. Некоторые говорили, что он потерял уверенность в себе, но не как математик».

У Горо Шимуры и поныне хранится последнее письмо, которое он получил от своего друга и коллеги Ютаки Таниямы
Друзья Таниямы недоумевали, так как он незадолго до самоубийства полюбил Мисако Сузуки и намеревался в том году вступить с ней в брак. В некрологе, опубликованном в журнале «Bulletin of the London Mathematical Society», Горо Шимура вспоминает помолвку Таниямы и Мисако и последние недели жизни своего друга:
«Получив известие об их помолвке, я был несколько удивлен, так как смутно ощущал, что она была не в его вкусе, но никаких дурных предчувствий у меня не было. Позднее мне рассказали, что они сняли квартиру, по-видимому, более комфортабельную, вместе купили кое-какую кухонную утварь и занялись приготовлениями к свадьбе. Будущее казалось безоблачным и им, и их друзьям. Катастрофа обрушилась внезапно.
Утром в понедельник 17 ноября 1958 года комендант аспирантского общежития, где жил Танияма, обнаружил его мертвым. На столе лежало предсмертное письмо. Оно заняло три страницы из блокнота, в котором он обычно производил вычисления. Первый абзац письма гласил: "Вплоть до вчерашнего дня у меня не было определенного намерения покончить с собой. Но многие обратили внимание на то, что последнее время я очень устал и физически, и умственно. Что касается причины самоубийства, то она не вполне понятна мне самому, но во всяком случае не является результатом чего-нибудь конкретного. Могу только сказать, что нахожусь в таком умонастроении, что утратил всякую уверенность в моем будущем. Возможно, кого-нибудь мое самоубийство встревожит или до какой-то степени огорчит. Я искренне надеюсь, что этот случай не омрачит будущее этого человека. Во всяком случае, я не могу отрицать того, что мой поступок отдает предательством, но прошу отнестись к нему снисходительно, как к последнему поступку, который я совершаю по своей воле. Всю свою жизнь я делал то, что хотел."
Далее Танияма очень скрупулезно описывает, как следует распорядиться его имуществом, какие книги и пластинки он брал в библиотеке или у друзей. В частности, в его посмертном письме говорится: "Я хотел бы оставить пластинки и проигрыватель Мисако Сузуки, если ей не будет неприятно получить их от меня". Затем он поясняет, на чем остановился, читая курсы математического анализа и линейной алгебры для студентов, и приносит своим коллегам извинения за те неудобства, которые причинит им его поступок. Это был один из самых блестящих и новаторских умов своего времени, ушедший из жизни по собственному желанию. Всего лишь за пять дней до самоубийства ему исполнился тридцать один год».
Через несколько недель после самоубийства Таниямы трагедия повторилась: его невеста Мисако Сузуки также покончила с собой. В ее посмертном письме говорилось: "Мы обещали друг другу, что куда бы мы ни отправились, мы никогда не будем разлучаться. Теперь он ушел. Я должна также уйти, чтобы быть вместе с ним".
Что значит «хорошо» в математике
За свою короткую жизнь в математике Танияма внес немало радикальных идей. Наиболее значительная из них настолько опередила свое время, что ему так и не довелось увидеть, какое огромное влияние она оказала на теорию чисел. Он был лидером среди молодых японских математиков, и его уход из жизни стал для них большой потерей. Шимура отчетливо вспоминает влияние Таниямы: «Он всегда был внимателен к коллегам, особенно к молодым, и искренне заботился об их благосостоянии. Для многих из тех, кто вступал с ним в математический контакт, в том числе и для меня, он служил моральной опорой. Возможно, он не догадывался о той роли, которую играл. Ныне я ощущаю его благородную щедрость в этом отношении еще более остро, чем когда он был жив. Но никто не смог поддержать его, когда он отчаянно нуждался в поддержке. Когда я думаю об этом, глубочайшая печаль переполняет меня».
После смерти Таниямы Шимура сосредоточил все свои усилия на том, чтобы понять, какая именно взаимосвязь существует между эллиптическими кривыми и модулярными формами. Несколько лет он упорно собирал все новые и новые факты и логические доводы в пользу гипотезы Таниямы. Постепенно он стал проникаться все большей уверенностью в том, что каждое эллиптическое уравнение в отдельности должно быть связано с соответствующей модулярной формой. Другие математики сомневались, и Шимура вспоминает разговор с одним знаменитым коллегой. Профессор спросил: «Я слышал, что Вы предполагаете, будто какие-то эллиптические кривые могут быть связаны с модулярными формами?» «Вы не поняли, — возразил Шимура. — Не просто какие-то эллиптические кривые, а каждая эллиптическая кривая!»
Шимура не мог доказать, что это действительно так, но всякий раз, когда он проверял гипотезу, она неизменно оказывалась верной. Во всяком случае, все происходившее как нельзя лучше вписывалась в его широкую философию математики. «У меня есть своя философия относительно того, что такое хорошо. Математика должна выражать то, что хорошо. Например, в случае эллиптической кривой, ее можно назвать хорошей, если она параметризована модулярной формой. По моим ожиданиям, все эллиптические кривые хорошие. Разумеется, это философия в чистом виде, но ничто не мешает ее принять за исходный пункт. Нужно ли говорить, что в обоснование гипотезы мне приходится изыскивать различные «технические» причины. Я бы сказал, что моя математическая гипотеза появилась из моего представления о том, что такое хорошо. Многие математики занимаются своей наукой из эстетических соображений, и моя философия того, что такое хорошо, также проистекает из моих эстетических соображений».
Собранные Шимурой подкрепляющие данные означали, что гипотеза о связи между эллиптическими кривыми и модулярными формами начала пользоваться более широким признанием. Шимура не мог доказать, что гипотеза верна, но, по крайней мере, никто более не мог утверждать, что, формулируя гипотезу, он выдает желаемое за действительное. В пользу нее теперь свидетельствовало довольно много фактов. Первоначально ее стали называть гипотезой Таниямы-Шимуры в знак признания заслуг человека, впервые высказавшего ее, и его коллеги, который развил ее и придал ей законченный вид.
Андре Вейль, один из крестных отцов теории чисел XX века, принял эту гипотезу и опубликовал ее на Западе. Вейль подверг идею Шимуры и Таниямы подробнейшему анализу и обнаружил еще более фундаментальные данные, свидетельствующие в ее пользу. В результате эту гипотезу стали часто называть гипотезой Таниямы-Шимуры—Вейля, иногда — гипотезой Таниямы—Вейля, а иногда даже гипотезой Вейля. Относительно того, как ее следует правильно называть, было немало дискуссий и споров. Для тех читателей, которые интересуются подобной комбинаторикой, заметим, что все возможные комбинации из трех имен — Таниямы, Шимуры и Вейля — появлялись в печати в течение года, однако я буду ее называть так, как ее назвали в самом начале, — гипотезой Таниямы-Шимуры.
Профессор Джон Коутс, руководитель Эндрю Уайлса в его аспирантские годы, сам был аспирантом в то время, когда гипотезу Таниямы-Шимуры начали обсуждать на Западе. «Я приступил к самостоятельным исследованиям в 1966 году, когда гипотеза Таниямы-Шимуры распространялась по всему миру. Все были потрясены и начали серьезно задумываться над вопросом, все ли эллиптические кривые могут быть модулярными. Время было захватывающе интересным; единственная проблема заключалась в том, что успехи были очень незначительны. Должен честно признаться, что сколь ни красивой была сама идея, доказать ее было очень трудно, и именно это привлекало нас как математиков».
В конце 60-х многие математики только и делали, что занимались проверкой гипотезы Таниямы-Шимуры. Они брали какую-нибудь эллиптическую кривую, вычисляли E -ряд и занимались поиском модулярной формы с таким же M -рядом. И каждый раз находили для данной эллиптической кривой соответствующую ей модулярную форму. И хотя это убедительно свидетельствует в пользу гипотезы Таниямы-Шимуры, доказательством собранные данные считать было нельзя. Математики подозревали, что гипотеза верна, но до тех пор, пока не найдено логическое доказательство, гипотеза оставалась всего лишь гипотезой.
Профессор Гарвардского университета Барри Мазур был свидетелем того, как гипотеза Таниямы-Шимуры обретала все большую известность. «Гипотеза была великолепной (предполагалось, что каждой эллиптической кривой соответствует модулярная форма), поначалу ее игнорировали, так как она опередила свое время. Когда она была выдвинута впервые, ее не восприняли всерьез потому, что она была чересчур удивительна. С одной стороны, вы имеете эллиптический мир, с другой — модулярный мир. Обе эти области математики исследовались интенсивно, но независимо друг от друга. Математики, занимавшиеся изучением эллиптических кривых, могли не быть сведущими в проблемах модулярных форм, и наоборот. И тут появляется гипотеза Таниямы-Шимуры, которая утверждает, что между двумя совершенно различными математическими мирами существует мост.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36