А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 


Инспектор Крейг довольно долго обдумывал сложившуюся ситуацию и в конечном счете все же сумел доказать, что либо один из пациентов находится в здравом уме, либо один из докторов лишился рассудка. Сумеете ли вы найти это доказательство?

9. В девятой лечебнице.
В этой лечебнице Крейг имел беседу с четырьмя ее обитателями А, В, С и D. А считал, что психическое состояние В и С одинаково. В считал, что психическое состояние А и D одинаково. Кроме того, на вопрос инспектора, заданный С: «Являетесь ли вы и D оба докторами?», С ответил: «Нет».
Все ли обстоит благополучно в данной лечебнице?

10. В десятой лечебнице.
Инспектору Крейгу этот случай представляется особенно интересным, хотя раскрыть его оказалось весьма нелегко. Первое, с чем столкнулся инспектор в этой больнице, было то обстоятельство, что ее обитатели любили объединяться в различные комитеты. При этом, как разузнал Крейг, членами комитета могли быть, с одной стороны, как врачи, так и пациенты, а с другой — как люди в здравом уме, так и лишившиеся рассудка. Далее Крейгу удалось выяснить следующие обстоятельства:
1. Все пациенты объединены в один комитет.
2. Все доктора также объединены в один комитет.
3. У каждого обитателя этой лечебницы имеется несколько приятелей, один из которых является его близким другом. К тому же у каждого обитателя лечебницы существует несколько недругов, один из которых является его злейшим врагом.
4. Для любого комитета С справедливо условие: все обитатели, чьи лучшие друзья входят в С, образуют комитет; все обитатели, чьи злейшие враги входят в С, также образуют комитет.
5. Для любых двух комитетов, скажем комитета 1 и комитета 2, существует по крайней мере один обитатель лечебницы D, у которого лучший друг считает, что D входит в комитет 1, а его злейший враг полагает, что D состоит в комитете 2.
Сопоставив все эти факты, Крейг весьма остроумным способом сумел доказать, что либо один из врачей лишился рассудка, либо один из пациентов находится в и здравом уме. Как инспектор догадался об этом?

11. Еще одно затруднение.
Крейг несколько задержался в описываемой лечебнице, поскольку его склонность к теоретическим рассуждениям и тут не дала инспектору покоя — внимание его привлекло еще несколько неясных вопросов. Например, ему было крайне любопытно узнать, объединялись ли все здравомыслящие обитатели лечебницы в один комитет, а также образовывали комитет те обитатели лечебницы, которые лишились рассудка. Не будучи в состоянии ответить на эти вопросы и исходя из условий 1–5 предыдущей задачи, он все же сумел доказать — причем лишь на основании условий 3, 4 и 5,— что обе эти группы не могут образовывать комитеты. Каким образом он это сделал?

12. Новое осложнение все в той же десятой лечебнице.
В конце концов Крейг сумел доказать еще одно утверждение, относящееся к обитателям этой больницы. Инспектор посчитал его весьма важным — ведь фактически оно позволило упростить решения двух последних задач. Само это утверждение заключалось в том, что для любых двух комитетов, комитета 1 и комитета 2, всегда должны найтись два обитателя Е и F, такие, что Е считает, будто F является членом комитета 1, а F полагает, будто Е состоит членом комитета 2. Каким образом Крейг доказал это утверждение?

13. Лечебница доктора Смолля и профессора Перро.
Однако с самыми большими странностями инспектор Крейг столкнулся в последней лечебнице, которую ему довелось посетить. Лечебницей этой руководили два известных врача — доктор Смолль и профессор Перро; кроме них в штате состояло еще несколько врачей. При этом здесь неукоснительно придерживались следующих правил. Если обитатель лечебницы считал, что он является пациентом, то его называли чудаком. Если же все пациенты считали, что данный обитатель чудак, а ни один из врачей его за чудака не принимал, то такого обитателя больницы было принято именовать оригиналом. Вдобавок Крейгу удалось выяснить еще два обстоятельства: 1) по крайней мере один из обитателей больницы был вполне нормальным и 2) во всей лечебнице строго выполнялось следующее условие:
Условие С. У каждого обитателя лечебницы имеется близкий друг. При этом для любых двух обитателей А и В справедливо следующее утверждение: если А считает, что В является оригиналом, тогда близкий друг этого А полагает, что В — пациент.
Вскоре после этого открытия инспектор Крейг решил в частном порядке побеседовать с больничным руководством в лице доктора Смолля и профессора Перро. Разговор с первым из них протекал так.
Крейг. Скажите, доктор Смолль, все ли врачи в вашей больнице в здравом уме?
Смолль. Я в этом абсолютно уверен.
Крейг. А как обстоят дела с пациентами? Все ли они безумны?
Смолль. По крайней мере один из них.
Крейга поразил последний ответ — уж очень он был осторожным. Конечно, если все больные в лечебнице лишены рассудка, то утверждение, что хоть один из них безумен, представляет собой несомненную истину. Но почему доктор Смолль был так сдержан в своем утверждении?
Затем Крейг побеседовал с профессором Перро; на этот раз разговор протекал следующим образом.
Крейг. Доктор Смолль утверждает, что по крайней мере один из здешних пациентов безумен. Это правда, не так ли?
Профессор Перро. Конечно, правда. Все пациенты тут безумны! Чем же мы руководим, по-вашему?
Крейг. А как обстоят дела с врачами? Все ли они нормальны?
Профессор Перро. По крайней мере один из них нормален
Крейг. А что вы скажете о докторе Смолле? Он-то хоть нормален?
Профессор Перро. Ну, разумеется! Как вы смеете задавать мне такой вопрос?
Только в этот момент Крейг осознал весь ужас положения! В чем же он заключался?
(Те, кто читал рассказ Эдгара Аллана По «Система доктора Смолля и профессора Перро», по всей видимости, догадаются, в чем дело, еще до того, как сумеют доказать правильность найденного решения; см. также примечание в конце этой главы.)

Решения

1. Докажем, что либо Джонс, либо Смит (правда, не известно, кто именно) должен оказаться либо лишенным рассудка врачом, либо пациентом, находящимся в здравом уме (правда, мы вновь не знаем, кем именно).
Так, например, Джонс может оказаться либо безумцем, либо нормальным человеком. Предположим сначала, что он находится в здравом уме. Тогда его утверждения истинны и, следовательно, Смит на самом деле является врачом. Далее, если Смит лишился рассудка, то это значит, что он является врачом, лишившимся рассудка. Если же Смит находится в здравом уме, тогда его ответ будет истинным; это в свою очередь означает, что Джонс является пациентом, и притом нормальным (поскольку мы предположили, что Джонс находится в здравом уме). Тем самым доказано, что если Джонс находится в здравом уме, тогда либо он является находящимся в здравом уме пациентом, либо Смит оказывается лишившимся рассудка врачом.
Предположим теперь, что Джонс безумен. Тогда его суждения неверны, откуда следует вывод, что Смит является пациентом. При этом, если Смит не лишился рассудка, то он будет пациентом, находящимся в здравом рассудке. Если же Смит безумен, его суждения ложны; это означает, что Джонс должен быть врачом, причем врачом, лишившимся рассудка. В свою очередь это доказывает, что если Джонс безумен, то либо он является лишившимся рассудка врачом, либо Смит должен быть находящимся в здравом уме пациентом.
Подведем итоги: если Джонс нормальный человек, то либо он находящийся в здравом уме пациент, либо Смит является лишившимся рассудка врачом. Если же Джонс безумен, тогда либо он лишившийся рассудка врач, либо Смит должен быть находящимся в здравом уме пациентом.
2. У этой задачи много решений. Простейшее из тех, что я смог придумать, заключается в том, чтобы обитатель больницы заявил: «Я не врач, обладающий здравым умом». Тогда говорящий должен быть находящимся в здравом уме пациентом. Мы можем доказать это следующим образом.
Лишившийся рассудка врач не может верить в то, что он не является врачом в здравом уме, поскольку это правда. Нормальный врач не может придерживаться ложного убеждения, будто он не является врачом, находящимся в здравом уме. Безумный пациент не может верить в то, что он не является врачом, находящимся в здравом уме (ведь безумный пациент на самом деле не является находящимся в здравом уме врачом). Поэтому говорящий является пациентом в здравом рассудке, так что его суждение о том, что он не есть находящийся в здравом уме врач, абсолютно справедливо.
3. Одним из подходящих для данного случая утверждений является, например, такое: «Я — лишившийся рассудка пациент». В самом деле, пациент, находящийся в здравом уме, не может придерживаться ложного убеждения, будто он пациент, лишившийся рассудка. Лишившийся же рассудка пациент не может верить в то, что он является пациентом, лишившимся рассудка. Следовательно, говорящий являлся не пациентом, а врачом. В то же время врач, находящийся в здравом уме, никогда не станет считать, будто он — лишившийся рассудка пациент. Поэтому говорящий должен быть лишившимся рассудка врачом, который придерживается ложного убеждения в том, что он является лишившимся рассудка пациентом.
4. Говорящий считает, что он пациент. Если он нормальный человек, тогда он действительно будет пациентом. Таким образом, он — пациент, находящийся в здравом уме, и никак не должен оставаться в психиатрической больнице. Если же говорящий не в своем уме, тогда его суждение неверно: это означает, что он должен быть не пациентом, а врачом. Следовательно, он оказывается лишившимся рассудка врачом и тоже никак не может состоять в штате больницы. Правда, мы не можем наверняка сказать, кем же будет говорящий на самом деле — находящимся в здравом уме пациентом или безумным врачом; однако, конечно же, в любом случае в психиатрической больнице ему не место.
5. Здесь ситуация оказывается совершенно иной! Именно потому, что говорящий лишь утверждает, будто он верит в то, что является пациентом, это вовсе не обязательно должно означать, что он действительно верит в то, что он пациент. Поскольку он говорит, что верит, будто является пациентом, тогда, будучи человеком искренним, говорящий в самом деле думает, что считает себя пациентом. Предположим теперь, что говорящий сошел с ума. Тогда все его суждения — в том числе и о собственных убеждениях — будут неверными, поэтому его уверенность в том, что он считает, будто является пациентом, указывает на то, что его убеждение в том, что он пациент, является ложным, и, следовательно, на самом деле он считает, что является врачом. Но поскольку он безумен и воображает себя врачом, то, значит, фактически он пациент. Итак, если говорящий сошел с ума, то он — лишившийся рассудка пациент. С другой стороны, предположим, что говорящий — нормальный человек. Поскольку он верит в это и считает себя пациентом, его убежденность в том, будто он пациент, является истинной. И так как говорящий уверен в том, что он пациент, то он и в самом деле является пациентом. Итак, если говорящий — нормальный человек, то он все равно должен оказаться пациентом. Мы видим, следовательно, что говорящий может быть как пациентом, находящимся в здравом уме, так и пациентом, лишившимся рассудка, так что у нас нет причин считать, будто бы в этой психиатрической лечебнице сложилась неблагоприятная обстановка. Обобщая сказанное, отметим следующие основные факты.
Если обитатель данной психиатрической лечебницы убежден в чем-либо, тогда его убеждение будет либо истинным, либо ложным в зависимости от того, является ли говорящий нормальным человеком или же он лишился рассудка. Но если же обитатель лечебницы верит, будто он убежден в чем-либо, то это убеждение должно быть истинным вне зависимости от того, безумен ли говорящий или он находится в здравом уме. (Если он безумен, то эти два убеждения как бы «нейтрализуют» друг друга, совсем как по известному всем правилу «минус на минус дает плюс».)
6. В этом случае говорящий вовсе не утверждает ни того, что является пациентом, ни того, что он считает, будто является пациентом. Он утверждает лишь, что верит, будто считает, что является пациентом. Поскольку говорящий верит в то, что он утверждает, тогда он считает, что верит, будто считает, что является пациентом. Первые два утверждения «нейтрализуют» друг друга (смотри последнюю фразу в решении предыдущей задачи), так что фактически говорящий считает, будто он является пациентом. Таким образом, данная задача сводится к задаче о лечебнице номер четыре, решение которой уже получено нами (говорящий должен быть либо находящимся в здравом уме пациентом, либо утратившим рассудок врачом).
7. Крейг предложил удалить из лечебницы обитателя А, руководствуясь следующими соображениями. Предположим что А — нормальный человек. Тогда его убеждение в том, что В лишился рассудка, справедливо. Далее, поскольку В оказывается безумным, то его убеждение, будто А является врачом, ошибочно, а потому А- пациент, находящийся в здравом рассудке, и его следует выписать из лечебницы. С другой стороны допустим, что А безумен. Тогда его убеждение, что В лишился рассудка, ошибочно, и, стало быть B — нормальный человек. При этом уверенность В в том, что А является врачом, справедлива, и потому в данном случае А является лишившимся рассудка врачом которого следует выдворить из лечебницы.
Относительно же самого В никаких определенных выводов сделать нельзя.
8. Согласно условию 5 существует некий обитатель лечебницы, назовем его Артуром, который доверяет любому из пациентов и отказывает в доверии всем врачам. В то же самое время, согласно условию 4, всегда найдется другой обитатель, назовем его Билл, доверяющий только тем обитателям, которые имеют по крайней мере одного наставника, которому доверяет Артур. Это означает, что для любого обитателя Х справедливо следующее утверждение: если Билл доверяет X, то Артур доверяет по крайней мере одному из наставников X, а если Билл не доверяет X, тогда Артур не доверяет ни одному из наставников X. Поскольку пользоваться доверием Артура означает то же самое, что и быть пациентом (согласно условию 5), то мы можем переформулировать последнее утверждение таким образом. Для любого обитателя лечебницы X справедливо следующее: если Билл доверяет X, то по крайней мере один из наставников X является пациентом; если же Билл не доверяет X, то тогда ни один из наставников X пациентом не является. Далее, поскольку это утверждение справедливо для любого обитателя X, то, значит, оно справедливо также и в случае, когда этим X является сам Билл. Итак, нам известны следующие факты:
1) если Билл доверяет самому себе, то у него есть по крайней мере один наставник, который является пациентом;
2) если Билл не доверяет самому себе, тогда ни один из наставников Билла не является пациентом.
Понятно, что при этом существуют две возможности: либо Билл доверяет самому себе, либо этого не происходит. Разберем теперь, что же получается в каждом из этих случаев.
Случай 1. Билл доверяет самому себе.
Тогда у Билла имеется по крайней мере один наставник, назовем его Питер, который должен быть пациентом. Поскольку Питер является наставником Билла, то Питер уверен, что Билл доверяет самому себе (согласно условию 3). Но Билл действительно доверяет самому себе, и потому убеждение Питера истинно, а значит, он нормальный человек. Стало быть, Питер — находящийся в здравом уме пациент, и ему никак не место в данной лечебнице.
Случай 2. Билл не доверяет самому себе.
В этой ситуации ни один из наставников Билла не является пациентом. Однако у Билла, как и у любого другого обитателя лечебницы, имеется по крайней мере один наставник, назовем его Ричардом; при этом ясно, что Ричард должен быть врачом. Кроме того, поскольку Ричард является наставником Билла, то, значит, Ричард полагает, что Билл доверяет самому себе. Однако его уверенность в этом оказывается ложной, и, следовательно, Ричард находится не в своем уме. Итак, Ричард является лишившимся рассудка врачом и никак не должен пребывать в штате этой лечебницы.
Подведем итоги: если Билл доверяет самому себе, то тогда по крайней мере один из пациентов данной лечебницы оказывается нормальным человеком. Если же Билл не доверяет самому себе, тогда по крайней мере один из врачей должен оказаться не в своем уме. Но так как нам не известно, доверяет ли Билл самому себе или нет, то мы не можем сказать точно, что же неладно в этой больнице — то ли туда помещен находящийся в здравом уме пациент, то ли там работает лишившийся рассудка врач.
9. Прежде всего покажем, что обитатели С и В обязательно должны быть одинаковы с точки зрения их психического состояния. Допустим сначала, что А и В являются нормальными людьми.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23