А-П

П-Я

 

Так, с запозданием, Калуца получил одобрение мастера.Хотя идея была прекрасной, последующий детальный анализ гипотезы Калуцы, дополненной Клейном, показал, что она находится в серьезном противоречии с экспериментальными данными. Простейшие попытки включить в теорию электрон приводили к предсказанию отношения его массы к заряду, которое существенно отличалось от измеренных значений. Поскольку не было видно способов разрешить эту проблему, многие физики потеряли интерес к идее Калуцы. Эйнштейн и ряд других ученых продолжали исследовать возможности использования дополнительных измерений, но тем не менее это направление вскоре оказалось на периферии теоретической физики.В действительности, идея Калуцы намного опередила свое время. 1920-е гг. ознаменовались началом бурного роста теоретических и экспериментальных исследований, посвященных изучению основных законов микромира. Теоретики были поглощены разработкой структуры квантовой механики и квантовой теории поля. Экспериментаторы были заняты детальным изучением свойств атомов и поиском новых элементарных компонентов мироздания. Теория направляла эксперимент, а эксперимент подправлял теорию — так продолжалось около полувека, и, в конечном счете, это привело к разработке стандартной модели. Неудивительно, что в это бурное и продуктивное время предположения по поводу дополнительных измерений были на обочине исследований. В эпоху, когда физики открывали мощные методы квантовой механики, дававшие предсказания, которые могли быть проверены экспериментально, изучение возможности того, что Вселенная может иметь совершенно иные свойства на расстояниях, которые слишком малы, чтобы их можно было исследовать даже с помощью самой современной техники, вызывало мало интереса.Но, рано или поздно, из машины выходит весь пар. К концу 1960-х — началу 1970-х гг. были разработаны теоретические основы стандартной модели. К концу 1970-х — началу 1980-х гг. многие ее предсказания получили экспериментальное подтверждение, и большинство специалистов по физике элементарных частиц пришло к выводу, что подтверждение оставшейся части этой теории является только вопросом времени. Хотя некоторые важные детали оставались невыясненными, многие думали, что на основные вопросы, касавшиеся сильного, слабого и электромагнитного взаимодействий, ответы уже получены.Пришло время вернуться к величайшей проблеме: неразрешенному противоречию между общей теорией относительности и квантовой механикой. Успех в формулировке квантовых теорий трех взаимодействий, существующих в природе, вдохновил физиков на попытку разработать такую же теорию для гравитации. После того, как многочисленные гипотезы потерпели крах, сообщество физиков стало более восприимчивым к более радикальным подходам. Теория Калуцы-Клейна, оставленная умирать медленной смертью в конце 1920-х гг., была вновь воскрешена. Современное состояние теории Калуцы-Клейна За шесть десятилетий, прошедших с момента первого появления гипотезы Калуцы, понимание физики значительно изменилось и углубилось. Квантовая механика была полностью сформулирована и получила экспериментальное подтверждение. Были открыты и, в значительной степени, объяснены сильное и слабое взаимодействия, которые в 1920-е гг. еще не были известны. Многие физики стали считать, что первоначальное предположение Калуцы потерпело неудачу из-за того, что он не знал об этих других взаимодействиях и был поэтому слишком консервативен в пересмотре структуры пространства. Дополнительные взаимодействия требуют дополнительных измерений. Было показано, что хотя одно новое циклическое измерение и способно решить задачу объединения общей теории относительности и электромагнетизма, оно является недостаточным.К середине 1970-х гг. развернулись интенсивные исследования, нацеленные на разработку теорий высших размерностей со многими свернутыми измерениями. На рис. 8.7 показан пример с двумя дополнительными измерениями, свернутыми в форму мяча, т. е. сферу.
Рис. 8.7. Два дополнительных измерения, свернутые в сферу. Как и в случае с одним циклическим измерением, эти дополнительные измерения присутствуют в каждой точке пространства, описываемого нашими обычными протяженными измерениями. (Для наглядности мы, опять же, изобразили только пример, где сферические измерения показаны в узлах регулярной сети, построенной для протяженных измерений.) Помимо предложения о другом числе дополнительных измерений, можно представить себе иные формы этих измерений. Например, на рис. 8.8 мы показали возможный вариант, в котором так же имеются два дополнительных измерения, имеющие теперь форму баранки, т.е. тора.
Рис. 8.8. Два дополнительных измерения, свернутые в баранку (тор). Хотя это и выходит за пределы наших изобразительных возможностей, можно представить себе более сложные ситуации, в которых имеется три, четыре, пять и вообще произвольное число дополнительных пространственных измерений, свернутых в самые экзотические формы. Поскольку до сих пор не было получено экспериментального подтверждения существования всех этих измерений, существенным по-прежнему остается требование, чтобы их пространственный размер был меньше, чем самый малый масштаб длин, доступный современной технике.Наиболее многообещающими из всех теорий с высшими размерностями были те, которые включали и суперсимметрию. Физики надеялись, что частичное сокращение наиболее интенсивных квантовых флуктуации, связанное с парами частиц-суперпартнеров, поможет смягчить противоречие между гравитацией и квантовой механикой. Для теорий, содержащих гравитацию, дополнительные измерения и суперсимметрию, они предложили название многомерная супергравитация.Как и в случае с оригинальной гипотезой Калуцы, различные варианты многомерной супергравитации выглядят, на первый взгляд, многообещающе. Новые уравнения, появляющиеся в результате добавления новых измерений, поразительно напоминают уравнения, используемые для описания электромагнетизма, а также сильного и слабого взаимодействий. Однако более внимательный анализ показывает, что старые загадки никуда не исчезли. Еще более важно то, что катастрофические квантовые флуктуации пространства, возникающие на малых расстояниях, хотя и ослабляются суперсимметрией, но недостаточно для того, чтобы теория стала непротиворечивой. Физики также убедились, что трудно разработать единую, непротиворечивую теорию с высшими размерностями, объединяющую все свойства взаимодействий и материи7).Постепенно становилось ясно, что хотя отдельные части объединенной теории начинают занимать свои места, однако ключевое звено, способное связать их в единое целое способом, не противоречащим квантовой механике, все еще отсутствовало. В 1984 г. это недостающее звено — теория струн — ярко вышло на сцену и заняло на ней центральное место. Дополнительные измерения и теория струн К этому моменту вы должны были убедиться, что наша Вселенная может иметь дополнительные свернутые пространственные измерения; естественно, пока они остаются достаточно малыми, никто не сможет доказать, что они не существуют. И все же дополнительные измерения могут показаться просто трюком. Наша неспособность исследовать расстояния, меньшие одной миллиардной от одной миллиардной доли метра, допускает существование не только сверхмалых измерений, но и различных других фантастических возможностей, даже существование микроскопических цивилизаций, населенных крошечными зелеными человечками. Хотя первое выглядит гораздо более рационально, чем последнее, постулирование любой из этих непроверенных и, в настоящее время, непроверяемых экспериментально возможностей может выглядеть одинаково произвольным.Таким было положение дел до появления теории струн. Эта теория разрешает центральное противоречие современной физики — несовместимость квантовой механики и общей теории относительности и унифицирует наше понимание всех фундаментальных компонент вешества и взаимодействий, существующих в природе. В дополнение к этим достижениям выясняется, что теория струн требует, чтобы Вселенная имела дополнительные измерения.Вот почему это так. Один из главных выводов квантовой механики состоит в том, что наша предсказательная способность принципиально ограничена утверждениями, что такой-то результат имеет такую-то вероятность. Хотя Эйнштейн испытывал неприязнь к современному пониманию квантовой теории (и вы можете согласиться с ним), факт остается фактом. Давайте принимать его таким, каков он есть. Как всем известно, значения вероятности всегда находятся между 0 и 1, или, если пользоваться процентами, между 0 и 100%. Как установили физики, первым признаком того, что квантовая механика перестает работать, является возникновение в расчетах «вероятностей», которые выходят за эти пределы. Например, как мы упоминали выше, признаком серьезного противоречия между общей теорией относительности и квантовой механикой в модели с точечными частицами являются бесконечные значения вероятностей, получаемые при расчетах. Как уже обсуждалось, теория струн позволяет избавиться от этих бесконечностей. Однако мы еще не сказали, что осталась другая, более тонкая проблема. На начальном этапе развития теории струн физики обнаружили, что некоторые вычисления приводят к появлению отрицательных вероятностей, также находящихся вне области допустимых значений. Таким образом, на первый взгляд, теория струн утонула в своем собственном квантово-механическом бульоне.С непоколебимым упорством физики искали и нашли причину появления этих неприемлемых результатов. Начнем объяснение с простого наблюдения. Если мы положим струну на двумерную поверхность (такую, как поверхность стола или Садового шланга), то число независимых направлений, в которых может колебаться струна, уменьшится до двух: влево-вправо и вперед-назад вдоль поверхности. Любая мода колебаний, ограниченная такой поверхностью, будет представлять собой комбинацию колебаний в этих двух направлениях. Одновременно это означает, что струна во Флатляндии, во вселенной Садового шланга или в любой другой двумерной вселенной тоже сможет колебаться только в этих двух независимых пространственных направлениях. Однако если мы уберем струну с поверхности, то число независимых направлений колебаний увеличится до трех, поскольку струна теперь сможет колебаться и в направлении вверх-вниз. Это означает, что во вселенной с тремя пространственными измерениями струна также может колебаться в трех независимых направлениях. Дальнейшее развитие этой идеи труднее поддается представлению, но общая схема сохраняется: во вселенных с большим числом пространственных измерений будет больше независимых направлений, в которых могут совершаться колебания.Мы уделили такое внимание этому факту, относящемуся к колебаниям струн, потому что физики обнаружили: вычисления, дающие бессмысленные результаты, очень чувствительны к числу независимых направлений, в которых может колебаться струна. Отрицательные вероятности возникают из-за несоответствия между требованиями теории и тем, что, как кажется, диктует реальность: расчеты показали, что если бы струны могли колебаться в девяти независимых пространственных направлениях, все отрицательные вероятности исчезли бы. Ну что ж, это большая победа теории, но нам-то какое дело до этого? Если теория струн призвана описать наш мир с тремя пространственными измерениями, у нас по-прежнему остаются проблемы.Но остаются ли? Вспоминая об идее более чем полувековой давности, мы видим, что Калуца и Клейн оставили нам лазейку. Поскольку струны так малы, они могут колебаться не только в больших, протяженных измерениях, но и в крошечных свернутых. Таким образом, мы можем удовлетворить требованию о девяти пространственных измерениях, предъявленному к нашей Вселенной теорией струн, предположив в духе Калуцы и Клейна, что в дополнение к трем привычным, протяженным пространственным измерениям Вселенная имеет шесть свернутых. В результате теория струн, которая была на грани исключения из мира физических реальностей, будет спасена. Более того, вместо постулирования существования дополнительных измерений, как делали Калуца, Клейн и их последователи, теория струн требует их. Для того чтобы теория струн стала непротиворечивой, Вселенная должна иметь девять пространственных измерений и одно временное — итого всего десять. Таким образом, идея Калуцы, прозвучавшая в 1919 г., торжественно и убедительно вышла на сцену. Некоторые вопросы Однако сразу же возникает ряд вопросов. Во-первых, почему теория струн требует именно девяти пространственных измерений для того, чтобы избежать бессмысленных значений вероятности? Это тот вопрос, на который, вероятно, труднее всего ответить без привлечения математического формализма теории струн. Прямой расчет с использованием аппарата теории струн приводит к этому результату, но никто не может дать интуитивного, не загроможденного техническими деталями объяснения, почему так происходит. Эрнест Резерфорд однажды сказал, что в действительности, если вы не можете объяснить результат на простом, не отягощенном специальными терминами языке, это значит, что вы не понимаете его по-настоящему. Слова Резерфорда не говорят, что ваш результат неверен, они говорят, что вы не полностью понимаете его происхождение, значение или следствия. Наверное, это справедливо по отношению к дополнительным измерениям в теории струн. (Воспользуемся возможностью упомянуть в скобках о центральном положении второй революции в теории суперструн, которую мы будем обсуждать в главе 12. Расчеты, лежащие в основе заключения о том, что имеется десять пространственно-временных измерений — девять пространственных и одно временное, оказались приближенными. В середине 1990-х гг. Виттен, основываясь на своих догадках и на более ранних работах Майкла Даффа из Техасского университета, а также Криса Халла и Пола Таунсенда из Кембриджского университета, смог привести убедительные свидетельства того, что в приближенных расчетах на самом деле было пропущено одно пространственное измерение. Теория струн, как он показал к большому удивлению большинства специалистов, работающих в этой области, на самом деле требует десяти пространственных измерений и одного временного, — т. е. в сумме одиннадцати измерений. Вплоть до главы 12 мы будем игнорировать этот важный результат, поскольку он не имеет прямого отношения к вопросам, которые мы собираемся рассматривать.)Во-вторых, если уравнения теории струн (или, точнее, приближенные уравнения, которые мы будем обсуждать до главы 12) показывают, что Вселенная имеет девять пространственных измерений и одно временное, почему три пространственных измерения (и одно временное) являются развернутыми и протяженными, а все остальные — маленькими и свернутыми? Почему все они не являются развернутыми, или почему все они не являются свернутыми, почему не реализовался какой-то другой промежуточный вариант? В настоящее время никто не знает ответа на этот вопрос. Если теория струн верна, рано или поздно мы узнаем ответ, но пока наше понимание этой теории не позволяет его получить. Сказанное не значит, что никто не отваживался ответить на этот вопрос. Например, встав на точку зрения космологии, можно предположить, что вначале все измерения находились в туго свернутом состоянии, а затем, в ходе Большого взрыва, три пространственных измерения и одно временное развернулись до своего современного состояния, тогда как остальные пространственные измерения остались малыми. Предварительные соображения о том, почему развернулись только три пространственных измерения, будут рассмотрены в главе 14, но, честно говоря, они пока находятся в стадии разработки. Ниже мы будем предполагать, что все пространственные измерения, кроме трех, находятся в свернутом состоянии, в соответствии с тем, что мы наблюдаем в окружающем мире. Одна из основных задач современного этапа исследований состоит в том, чтобы показать, что это предположение следует из самой теории.В-третьих, если требуется несколько дополнительных измерений, не может ли быть так, что наряду с пространственными будут и дополнительные временные измерения? Если вы поразмышляете об этом с минуту, то почувствуете, что это поистине странная возможность. У нас есть внутреннее интуитивное представление о том, как выглядит вселенная, имеющая несколько пространственных измерений, поскольку мы живем в мире, в котором постоянно сталкиваемся с несколькими, а именно с тремя измерениями. Но как выглядит вселенная, в которой есть несколько времен?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59