То, о чем мы будем говорить в этой и последующих главах, – всего лишь результат теоретического моделирования – процедуры во многом спорной и умозрительной.
Чтобы осмыслить события, вероятно, происходившие в первые мгновения существования Вселенной, необходимо понять природу космической активности. Если бы мы могли путешествовать вспять во времени, начиная с сегодняшнего дня, то заметили бы, что по мере движения назад темп развития ускоряется. Так, изменения Земли в процессе ее эволюции в течение 4,6 млрд. лет происходили очень медленно; поэтому геологические масштабы времени измеряются миллионами лет. Если бы нам удалось вернуться во времена, отстоящие от момента Большого взрыва не на миллиарды, а на миллионы лет, то мы обнаружили бы, что темп развития значительно ускорился. Галактики сформировались в течение нескольких сотен миллионов лет, тогда как звезды – еще быстрее (по-видимому, за несколько десятков миллионов лет).
За рубежом, отстоящим от Большого взрыва на 100 тыс. лет, Вселенная предстает почти лишенной какой-либо структуры – это период горячей плазмы. Темп эволюции здесь можно оценивать по скорости космического расширения и падения температуры. В этот период Вселенная расширялась примерно в 100 тыс. раз быстрее, чем сегодня, а ее температура достигала нескольких тысяч градусов. Еще раньше скорость расширения была много больше, а температура – гораздо выше. В момент 1с размеры Вселенной возрастали вдвое примерно за 1с, а ее температура достигала 10^10 К. Очевидно, в пределах первой секунды темп изменений Вселенной был еще выше, безгранично нарастая по мере приближения к моменту Большого взрыва.
Математически это нарастание темпа активности описывается обратно пропорциональной зависимостью. Если обозначить через время, прошедшее от момента рождения Вселенной – момента Большого взрыва, – то скорость расширения будет пропорциональна 1/t, а температура – 1/sqrt. С уменьшением t обе эти величины возрастают все быстрее, стремясь к бесконечности. Таким образом, поскольку космическая активность неуклонно возрастает по мере приближения к моменту рождения Вселенной, существенные изменения происходят, по-видимому, за все более короткие промежутки времени. Поэтому здесь целесообразно перейти на исчисление времени в долях 10. Так, за промежуток времени 0,1–1с происходит столько же событий, сколько в интервале 0,01–0,1с и т.д. Хотя интервал времени уменьшается последовательно в 10 раз, темп изменений, происходящих в каждом таком интервале, оказывается примерно одинаковым.
Возникает вполне естественный вопрос, как далеко можно экстраполировать нашу модель ранней Вселенной, сохраняя уверенность в ее адекватности. Я вспоминаю, как будучи студентом присутствовал в конце 60-х годов на лекции по космологии, где разговор шел о недавно открытом фоновом тепловом излучении. Лектор был несколько смущен, говоря о расчетах содержания гелия на основе ядерных реакций, происходивших, как предполагалось, в первые минуты существования Вселенной. Большинство аудитории открыто смеялось над этой дерзкой затеей и явно ощущало, что моделирование Вселенной в столь ранние моменты ее эволюции – занятие довольно сомнительное. Сегодня умонастроение резко переменилось. Расчеты содержания гелия стали частью общепризнанного подхода в космологических исследованиях и наше внимание привлекают периоды времени, предшествующие нуклеосинтезу.
У многих вызывает удивление, что экстремальные условия, преобладавшие в первую секунду жизни Вселенной, сегодня можно изучать экспериментально. На современных ускорителях частиц удается в течение очень короткого времени воспроизводить физические условия, существовавшие в столь ранние моменты времени как 10^-12 с, когда температура достигала 10^16 К, а вся наблюдаемая сегодня Вселенная была «сжата» до размеров Солнечной системы. Таким образом, в путешествии вспять во времени в странный мир первозданной Вселенной нашим проводником на части пути может быть эксперимент.
По мере углубления в прошлое мы встречаемся со все более экстремальными физическими условиями. Наиболее важным параметром, позволяющим оценить этот процесс, является энергия. С приближением к моменту рождения Вселенной энергия типичной частицы, «плавающей» в первичной плазме, возрастает все быстрее. Для момента, соответствующего 1мин, характерны энергии рентгеновского диапазона. В момент, соответствующий 1с, господствуют энергии, свойственные некоторым радиоактивным превращениям. В момент, равный 1 мкс (микросекунда), энергия типичной частицы сравнима с энергией, которую удавалось получить на ускорителях начала 50-х годов. Подходя к моменту, соответствующему 1пс (пикосекунда, 10^-12с), мы приближаемся к пределу энергии, достигнутому в настоящее время в физике элементарных частиц. За этим пределом путеводной нитью может служить только теория.
В предыдущих главах мы говорили, что существующие в природе четыре взаимодействия могут рассматриваться как части одной главной силы – Суперсилы. Ошибочное представление о различной природе четырех взаимодействий сложилось потому, что обычно мы имеем дело с миром относительно низких энергий; с увеличением энергии взаимодействия объединяются. Прежде всего объединяются электромагнитное и слабое взаимодействия. Это происходит при энергиях, эквивалентных примерно 90 массам протона, что соответствует температуре около 10^15 К. Существующие ускорители как раз позволяют достичь таких значений, при которых происходит рождение W и Z-частиц. Последующее объединение электрослабого и сильного взаимодействий, а в конечном счете и гравитации невозможно, пока не будут получены более высокие энергии. Для этого необходимо достичь масштабов Великого объединения и массы Планка, что в триллионы раз превосходит масштаб электрослабого взаимодействия.
С этой точки зрения ранняя Вселенная представляла собой гигантскую лабораторию природы, в которой энергия, высвободившаяся в результате Большого взрыва, пробудила физические процессы, не воспроизводимые в земных условиях. И хотя прямые эксперименты с Суперсилой, вероятно, никогда не станут реальными, мы можем тем не менее обратиться к космологии за разгадкой причин кратковременной активности суперсилы в первые мгновения существования Вселенной.
Спустя 10^-12 с после Большого взрыва температура была столь высока, что тепловая энергия оказалась достаточной для рождения всех известных частиц и античастиц. Вещество и антивещество присутствовали во Вселенной почти в равных количествах. Позднее, когда составлявшие большую часть вещества пары частица-античастица аннигилировали, возник «остаток» вещества. Плотность частиц была столь высока, что установилось равновесие, при котором энергия равномерно распределялась между всеми видами частиц.
Характер вещества во Вселенной на этой стадии резко отличался от всего, что нам удается непосредственно наблюдать. При столь высокой плотности адроны не имели индивидуальных свойств; протоны и нейтроны не существовали как различные объекты. Вещество представляло собой « кварковую жидкость», в которой кварки двигались более или менее независимо. Кроме того, при этих энергиях не было никакого различия между слабым и электромагнитным взаимодействиями, а природа кварков и лептонов проявлялась весьма своеобразно. Такие известные нам частицы, как электроны, мюоны и нейтрино, не существовали в обычном виде. Свойства фотонов, а также W– и Z-частиц оказались безнадежно перемешанными. Если бы нам удалось сдвинуться вспять во времени вплоть до этого момента, то нам предстало бы совершенно неизвестное состояние материи, когда частицы еще не приобрели той формы, к которой привыкли специалисты в области физики элементарных частиц.
Ключ к пониманию природы этой странной высокотемпературной фазы материи лежит в нарушении симметрии. В гл. 8 было показано, каким образом спонтанное нарушение калибровочной симметрии может наделить частицы массой и создать различие между электромагнитным и слабым взаимодействиями. Существует общее правило природы, согласно которому высокие температуры стремятся восстановить симметрию. Хорошим примером проявления этого правила могут служить две фазы воды – жидкая и твердая (лед). В кристалле льда обнаруживаются выделенные направления – направления вдоль ребер кристаллической решетки. При таянии льда кристаллическая структура разрушается. У возникшей вместо кусочка льда капли воды уже нет никаких выделенных направлений в пространстве – она симметрична. Таким образом, повышение температуры привело к восстановлению изначальной пространственной симметрии, которая была спонтанно нарушена у кристалла льда. При увеличении температуры до 10^16 К происходит фазовый переход, аналогичный переходу лед-вода. Однако в этом случае восстанавливается калибровочная симметрия электрослабого взаимодействия.
Как видим, картина Вселенной в момент, соответствующий 1пс, весьма примечательна. Вселенная заполнена таинственной жидкостью, в последующие времена уже нигде не встречающейся, и населена неведомыми нам частицами. Однако вещество не может продолжительно существовать в столь странной фазе. Падение температуры вызывает внезапный фазовый переход, напоминающий замерзание воды и образование льда. Столь же внезапно возникают и известные нам частицы – электроны, нейтрино, фотоны и кварки, которые теперь вполне различимы. Калибровочная симметрия нарушена, а электромагнитное взаимодействие отделилось от слабого.
Если проследить за дальнейшей эволюцией космического вещества, то мы станем свидетелями еще одного фазового перехода, который произойдет спустя 1 мс (миллисекунда) после Большого взрыва. Плотный конгломерат быстро движущихся кварков внезапно конденсируется, образуя адроны с вполне определенными свойствами. В этом море частиц можно различить отдельные протоны, нейтроны, мезоны и другие сильно взаимодействующие частицы, в которых кварки объединены в четкие группы – попарно или по три. По мере дальнейшего падения температуры все оставшиеся античастицы (например, позитроны) аннигилируют, создавая интенсивное гамма-излучение. В результате вещество превращается в знакомую нам смесь протонов, нейтронов, электронов, нейтрино и фотонов, и открывается прямой путь для синтеза гелия, который начинается спустя несколько секунд после Большого взрыва.
Попытка изучить эволюцию Вселенной начиная с 10^-12 с привела нас к новому замечательному представлению о природе вещества. Мы убедились, что протоны и нейтроны – эти «кирпичики» мироздания – существовали не всегда, а «выморозились» из кваркового бульона спустя примерно 10^-3 с после Большого взрыва. Поэтому эти ядерные частицы (нуклоны) можно считать реликтами первой миллисекунды существования Вселенной. Еще более удивителен тот факт, что лептоны и кварки, лежащие в основе всего вещества Вселенной, обрели свою индивидуальность лишь спустя примерно 10^-12 с; таким образом, они являются реликтами первой пикосекунды.
Постепенно начинает вырисовываться систематическая картина эволюции Вселенной. Происхождение элементов можно проследить до отдаленных эпох возникновения звезд и нуклеосинтеза в первые минуты существования Вселенной. Протоны и нейтроны, служащие материалом для создания ядер, образовались еще раньше, тогда как лептоны и кварки, лежащие в основе ядерных частиц, являются реликтами первой триллионной доли (10^-12 ) секунды существования Вселенной. Однако остается главная загадка, которая возвращает нас к значительно более ранней эпохе – эпохе Великого объединения.
Происхождение вещества
Первоначальный вариант теории Большого взрыва не давал убедительного объяснения того, каким образом в ходе первичного взрыва возникло вещество. Космологам не оставалось ничего другого, как предположить, что все вещество, из которого построена Вселенная, существовало с самого начала. Ни один из известных физических процессов не мог объяснить возникновение вещества. В настоящее время новая космология дает очень правдоподобное объяснение происхождению вещества, основанное на действии суперсилы.
О возможности возникновения вещества в результате концентрации энергии известно в течение нескольких десятков лет. При Большом взрыве не было недостатка в энергии, необходимой для образования вещества видимой части Вселенной, общая масса которого оценивается в 10^50 т. Загадка заключается в том, как все это вещество могло возникнуть без равного количества антивещества (мы уже упоминали об этой проблеме в гл.2). В лабораторных условиях возникновение вещества всегда сопровождается рождением антивещества, и симметрия между ними, по-видимому, заложена в законах физики. Неизбежен вопрос: куда же девалось все антивещество?
Прежде всего следует убедиться в том, что Вселенная действительно построена только из вещества. Например, камень из антивещества во всех отношениях был бы сходен с камнем из вещества, и посмотрев на них, мы не отличили бы их друг от друга. Тем не менее существует безошибочный способ установить, что есть что. Если привести каждый из камней в соприкосновение с куском вещества, то камень из антивещества исчезнет, произведя взрыв, по мощности сравнимый с ядерным. Даже тоненькая струйка газа антивещества вызвала бы бурную реакцию – интенсивное гамма-излучение. Мы, несомненно, можем быть уверены, что Земля на 100% состоит из вещества.
Но присуща ли такая асимметрия Вселенной в целом? Насколько мы можем судить – да. Если бы наша Галактика содержала антивещество в сколько-нибудь значительном количестве, то при неизбежных столкновениях между газом, пылью, звездами, планетами и другими объектами вещество, встречаясь с антивеществом, аннигилировало бы, в результате чего возникали бы мощные потоки гамма-излучения. Столь высокий уровень гамма-излучения, безусловно, был бы зарегистрирован; пока же, по имеющимся у астрономов данным, содержание антивещества в нашей Галактике не превышает тысячной доли. Если исключить единичные антипротоны, обнаруженные в космических лучах, то в целом Галактика, по-видимому, состоит только из вещества.
Можно предположить, что некоторые галактики, напротив, состоят только из антивещества (с очень небольшой добавкой вещества). Однако время от времени даже галактики сталкиваются друг с другом, причем в прошлом они находились значительно ближе друг к другу. Гамма-излучение, возникшее в результате таких столкновений, наблюдалось бы и сегодня. Более того, если рассматривать Вселенную как целое, то трудно понять, каким образом первоначальная смесь вещества и антивещества могла когда-то разделиться и попасть в удаленные друг от друга области пространства. Основываясь на этих наблюдениях, большинство космологов считают, что Вселенная построена в основном из вещества, и эта асимметрия была заложена в самые ранние этапы эволюции Вселенной.
Еще десять лет назад предлагалось единственное объяснение первичного нарушения баланса между веществом и антивеществом – считалось, что асимметрия присуща Вселенной с самого начала, т.е. уже в процессе Большого взрыва возникла диспропорция между веществом и антивеществом. Подобное объяснение, основанное на искусственно подобранных начальных условиях, разумеется, не может быть удовлетворительным, ибо оно ведет по замкнутому логическому кругу. Такие «объяснения» нельзя считать научными. С их помощью можно описать любое начальное соотношение вещества и антивещества. Они ничего не говорят о том, почему наблюдаемая асимметрия столь мала или столь велика. По-видимому, не существует веских причин, по которым, например, количество вещества не могло бы оказаться в два, а возможно, и в миллион раз больше.
ТВО приходит на помощь
Более естественно предполагать изначально полную симметрию между веществом и антивеществом, нежели считать, что преобладание вещества во Вселенной «от бога», и лишь затем в силу тех или иных причин оно обозначилось и закрепилось. В этом случае уже нет необходимости доверять произвольно выбранным начальным условиям; состояние, в котором существует точное равенство количеств вещества и антивещества, единственно. Наблюдаемое преобладание вещества над антивеществом можно было бы количественно объяснить на основе физической теории.
Для осуществления этой идеи, очевидно, необходимо придумать физический механизм, который нарушал бы симметрию между веществом и антивеществом, считавшуюся по традиции одним из нерушимых законов физики. В конце 70-х годов физики нашли такой механизм нарушения симметрии в виде теорий Великого объединения (ТВО).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Чтобы осмыслить события, вероятно, происходившие в первые мгновения существования Вселенной, необходимо понять природу космической активности. Если бы мы могли путешествовать вспять во времени, начиная с сегодняшнего дня, то заметили бы, что по мере движения назад темп развития ускоряется. Так, изменения Земли в процессе ее эволюции в течение 4,6 млрд. лет происходили очень медленно; поэтому геологические масштабы времени измеряются миллионами лет. Если бы нам удалось вернуться во времена, отстоящие от момента Большого взрыва не на миллиарды, а на миллионы лет, то мы обнаружили бы, что темп развития значительно ускорился. Галактики сформировались в течение нескольких сотен миллионов лет, тогда как звезды – еще быстрее (по-видимому, за несколько десятков миллионов лет).
За рубежом, отстоящим от Большого взрыва на 100 тыс. лет, Вселенная предстает почти лишенной какой-либо структуры – это период горячей плазмы. Темп эволюции здесь можно оценивать по скорости космического расширения и падения температуры. В этот период Вселенная расширялась примерно в 100 тыс. раз быстрее, чем сегодня, а ее температура достигала нескольких тысяч градусов. Еще раньше скорость расширения была много больше, а температура – гораздо выше. В момент 1с размеры Вселенной возрастали вдвое примерно за 1с, а ее температура достигала 10^10 К. Очевидно, в пределах первой секунды темп изменений Вселенной был еще выше, безгранично нарастая по мере приближения к моменту Большого взрыва.
Математически это нарастание темпа активности описывается обратно пропорциональной зависимостью. Если обозначить через время, прошедшее от момента рождения Вселенной – момента Большого взрыва, – то скорость расширения будет пропорциональна 1/t, а температура – 1/sqrt. С уменьшением t обе эти величины возрастают все быстрее, стремясь к бесконечности. Таким образом, поскольку космическая активность неуклонно возрастает по мере приближения к моменту рождения Вселенной, существенные изменения происходят, по-видимому, за все более короткие промежутки времени. Поэтому здесь целесообразно перейти на исчисление времени в долях 10. Так, за промежуток времени 0,1–1с происходит столько же событий, сколько в интервале 0,01–0,1с и т.д. Хотя интервал времени уменьшается последовательно в 10 раз, темп изменений, происходящих в каждом таком интервале, оказывается примерно одинаковым.
Возникает вполне естественный вопрос, как далеко можно экстраполировать нашу модель ранней Вселенной, сохраняя уверенность в ее адекватности. Я вспоминаю, как будучи студентом присутствовал в конце 60-х годов на лекции по космологии, где разговор шел о недавно открытом фоновом тепловом излучении. Лектор был несколько смущен, говоря о расчетах содержания гелия на основе ядерных реакций, происходивших, как предполагалось, в первые минуты существования Вселенной. Большинство аудитории открыто смеялось над этой дерзкой затеей и явно ощущало, что моделирование Вселенной в столь ранние моменты ее эволюции – занятие довольно сомнительное. Сегодня умонастроение резко переменилось. Расчеты содержания гелия стали частью общепризнанного подхода в космологических исследованиях и наше внимание привлекают периоды времени, предшествующие нуклеосинтезу.
У многих вызывает удивление, что экстремальные условия, преобладавшие в первую секунду жизни Вселенной, сегодня можно изучать экспериментально. На современных ускорителях частиц удается в течение очень короткого времени воспроизводить физические условия, существовавшие в столь ранние моменты времени как 10^-12 с, когда температура достигала 10^16 К, а вся наблюдаемая сегодня Вселенная была «сжата» до размеров Солнечной системы. Таким образом, в путешествии вспять во времени в странный мир первозданной Вселенной нашим проводником на части пути может быть эксперимент.
По мере углубления в прошлое мы встречаемся со все более экстремальными физическими условиями. Наиболее важным параметром, позволяющим оценить этот процесс, является энергия. С приближением к моменту рождения Вселенной энергия типичной частицы, «плавающей» в первичной плазме, возрастает все быстрее. Для момента, соответствующего 1мин, характерны энергии рентгеновского диапазона. В момент, соответствующий 1с, господствуют энергии, свойственные некоторым радиоактивным превращениям. В момент, равный 1 мкс (микросекунда), энергия типичной частицы сравнима с энергией, которую удавалось получить на ускорителях начала 50-х годов. Подходя к моменту, соответствующему 1пс (пикосекунда, 10^-12с), мы приближаемся к пределу энергии, достигнутому в настоящее время в физике элементарных частиц. За этим пределом путеводной нитью может служить только теория.
В предыдущих главах мы говорили, что существующие в природе четыре взаимодействия могут рассматриваться как части одной главной силы – Суперсилы. Ошибочное представление о различной природе четырех взаимодействий сложилось потому, что обычно мы имеем дело с миром относительно низких энергий; с увеличением энергии взаимодействия объединяются. Прежде всего объединяются электромагнитное и слабое взаимодействия. Это происходит при энергиях, эквивалентных примерно 90 массам протона, что соответствует температуре около 10^15 К. Существующие ускорители как раз позволяют достичь таких значений, при которых происходит рождение W и Z-частиц. Последующее объединение электрослабого и сильного взаимодействий, а в конечном счете и гравитации невозможно, пока не будут получены более высокие энергии. Для этого необходимо достичь масштабов Великого объединения и массы Планка, что в триллионы раз превосходит масштаб электрослабого взаимодействия.
С этой точки зрения ранняя Вселенная представляла собой гигантскую лабораторию природы, в которой энергия, высвободившаяся в результате Большого взрыва, пробудила физические процессы, не воспроизводимые в земных условиях. И хотя прямые эксперименты с Суперсилой, вероятно, никогда не станут реальными, мы можем тем не менее обратиться к космологии за разгадкой причин кратковременной активности суперсилы в первые мгновения существования Вселенной.
Спустя 10^-12 с после Большого взрыва температура была столь высока, что тепловая энергия оказалась достаточной для рождения всех известных частиц и античастиц. Вещество и антивещество присутствовали во Вселенной почти в равных количествах. Позднее, когда составлявшие большую часть вещества пары частица-античастица аннигилировали, возник «остаток» вещества. Плотность частиц была столь высока, что установилось равновесие, при котором энергия равномерно распределялась между всеми видами частиц.
Характер вещества во Вселенной на этой стадии резко отличался от всего, что нам удается непосредственно наблюдать. При столь высокой плотности адроны не имели индивидуальных свойств; протоны и нейтроны не существовали как различные объекты. Вещество представляло собой « кварковую жидкость», в которой кварки двигались более или менее независимо. Кроме того, при этих энергиях не было никакого различия между слабым и электромагнитным взаимодействиями, а природа кварков и лептонов проявлялась весьма своеобразно. Такие известные нам частицы, как электроны, мюоны и нейтрино, не существовали в обычном виде. Свойства фотонов, а также W– и Z-частиц оказались безнадежно перемешанными. Если бы нам удалось сдвинуться вспять во времени вплоть до этого момента, то нам предстало бы совершенно неизвестное состояние материи, когда частицы еще не приобрели той формы, к которой привыкли специалисты в области физики элементарных частиц.
Ключ к пониманию природы этой странной высокотемпературной фазы материи лежит в нарушении симметрии. В гл. 8 было показано, каким образом спонтанное нарушение калибровочной симметрии может наделить частицы массой и создать различие между электромагнитным и слабым взаимодействиями. Существует общее правило природы, согласно которому высокие температуры стремятся восстановить симметрию. Хорошим примером проявления этого правила могут служить две фазы воды – жидкая и твердая (лед). В кристалле льда обнаруживаются выделенные направления – направления вдоль ребер кристаллической решетки. При таянии льда кристаллическая структура разрушается. У возникшей вместо кусочка льда капли воды уже нет никаких выделенных направлений в пространстве – она симметрична. Таким образом, повышение температуры привело к восстановлению изначальной пространственной симметрии, которая была спонтанно нарушена у кристалла льда. При увеличении температуры до 10^16 К происходит фазовый переход, аналогичный переходу лед-вода. Однако в этом случае восстанавливается калибровочная симметрия электрослабого взаимодействия.
Как видим, картина Вселенной в момент, соответствующий 1пс, весьма примечательна. Вселенная заполнена таинственной жидкостью, в последующие времена уже нигде не встречающейся, и населена неведомыми нам частицами. Однако вещество не может продолжительно существовать в столь странной фазе. Падение температуры вызывает внезапный фазовый переход, напоминающий замерзание воды и образование льда. Столь же внезапно возникают и известные нам частицы – электроны, нейтрино, фотоны и кварки, которые теперь вполне различимы. Калибровочная симметрия нарушена, а электромагнитное взаимодействие отделилось от слабого.
Если проследить за дальнейшей эволюцией космического вещества, то мы станем свидетелями еще одного фазового перехода, который произойдет спустя 1 мс (миллисекунда) после Большого взрыва. Плотный конгломерат быстро движущихся кварков внезапно конденсируется, образуя адроны с вполне определенными свойствами. В этом море частиц можно различить отдельные протоны, нейтроны, мезоны и другие сильно взаимодействующие частицы, в которых кварки объединены в четкие группы – попарно или по три. По мере дальнейшего падения температуры все оставшиеся античастицы (например, позитроны) аннигилируют, создавая интенсивное гамма-излучение. В результате вещество превращается в знакомую нам смесь протонов, нейтронов, электронов, нейтрино и фотонов, и открывается прямой путь для синтеза гелия, который начинается спустя несколько секунд после Большого взрыва.
Попытка изучить эволюцию Вселенной начиная с 10^-12 с привела нас к новому замечательному представлению о природе вещества. Мы убедились, что протоны и нейтроны – эти «кирпичики» мироздания – существовали не всегда, а «выморозились» из кваркового бульона спустя примерно 10^-3 с после Большого взрыва. Поэтому эти ядерные частицы (нуклоны) можно считать реликтами первой миллисекунды существования Вселенной. Еще более удивителен тот факт, что лептоны и кварки, лежащие в основе всего вещества Вселенной, обрели свою индивидуальность лишь спустя примерно 10^-12 с; таким образом, они являются реликтами первой пикосекунды.
Постепенно начинает вырисовываться систематическая картина эволюции Вселенной. Происхождение элементов можно проследить до отдаленных эпох возникновения звезд и нуклеосинтеза в первые минуты существования Вселенной. Протоны и нейтроны, служащие материалом для создания ядер, образовались еще раньше, тогда как лептоны и кварки, лежащие в основе ядерных частиц, являются реликтами первой триллионной доли (10^-12 ) секунды существования Вселенной. Однако остается главная загадка, которая возвращает нас к значительно более ранней эпохе – эпохе Великого объединения.
Происхождение вещества
Первоначальный вариант теории Большого взрыва не давал убедительного объяснения того, каким образом в ходе первичного взрыва возникло вещество. Космологам не оставалось ничего другого, как предположить, что все вещество, из которого построена Вселенная, существовало с самого начала. Ни один из известных физических процессов не мог объяснить возникновение вещества. В настоящее время новая космология дает очень правдоподобное объяснение происхождению вещества, основанное на действии суперсилы.
О возможности возникновения вещества в результате концентрации энергии известно в течение нескольких десятков лет. При Большом взрыве не было недостатка в энергии, необходимой для образования вещества видимой части Вселенной, общая масса которого оценивается в 10^50 т. Загадка заключается в том, как все это вещество могло возникнуть без равного количества антивещества (мы уже упоминали об этой проблеме в гл.2). В лабораторных условиях возникновение вещества всегда сопровождается рождением антивещества, и симметрия между ними, по-видимому, заложена в законах физики. Неизбежен вопрос: куда же девалось все антивещество?
Прежде всего следует убедиться в том, что Вселенная действительно построена только из вещества. Например, камень из антивещества во всех отношениях был бы сходен с камнем из вещества, и посмотрев на них, мы не отличили бы их друг от друга. Тем не менее существует безошибочный способ установить, что есть что. Если привести каждый из камней в соприкосновение с куском вещества, то камень из антивещества исчезнет, произведя взрыв, по мощности сравнимый с ядерным. Даже тоненькая струйка газа антивещества вызвала бы бурную реакцию – интенсивное гамма-излучение. Мы, несомненно, можем быть уверены, что Земля на 100% состоит из вещества.
Но присуща ли такая асимметрия Вселенной в целом? Насколько мы можем судить – да. Если бы наша Галактика содержала антивещество в сколько-нибудь значительном количестве, то при неизбежных столкновениях между газом, пылью, звездами, планетами и другими объектами вещество, встречаясь с антивеществом, аннигилировало бы, в результате чего возникали бы мощные потоки гамма-излучения. Столь высокий уровень гамма-излучения, безусловно, был бы зарегистрирован; пока же, по имеющимся у астрономов данным, содержание антивещества в нашей Галактике не превышает тысячной доли. Если исключить единичные антипротоны, обнаруженные в космических лучах, то в целом Галактика, по-видимому, состоит только из вещества.
Можно предположить, что некоторые галактики, напротив, состоят только из антивещества (с очень небольшой добавкой вещества). Однако время от времени даже галактики сталкиваются друг с другом, причем в прошлом они находились значительно ближе друг к другу. Гамма-излучение, возникшее в результате таких столкновений, наблюдалось бы и сегодня. Более того, если рассматривать Вселенную как целое, то трудно понять, каким образом первоначальная смесь вещества и антивещества могла когда-то разделиться и попасть в удаленные друг от друга области пространства. Основываясь на этих наблюдениях, большинство космологов считают, что Вселенная построена в основном из вещества, и эта асимметрия была заложена в самые ранние этапы эволюции Вселенной.
Еще десять лет назад предлагалось единственное объяснение первичного нарушения баланса между веществом и антивеществом – считалось, что асимметрия присуща Вселенной с самого начала, т.е. уже в процессе Большого взрыва возникла диспропорция между веществом и антивеществом. Подобное объяснение, основанное на искусственно подобранных начальных условиях, разумеется, не может быть удовлетворительным, ибо оно ведет по замкнутому логическому кругу. Такие «объяснения» нельзя считать научными. С их помощью можно описать любое начальное соотношение вещества и антивещества. Они ничего не говорят о том, почему наблюдаемая асимметрия столь мала или столь велика. По-видимому, не существует веских причин, по которым, например, количество вещества не могло бы оказаться в два, а возможно, и в миллион раз больше.
ТВО приходит на помощь
Более естественно предполагать изначально полную симметрию между веществом и антивеществом, нежели считать, что преобладание вещества во Вселенной «от бога», и лишь затем в силу тех или иных причин оно обозначилось и закрепилось. В этом случае уже нет необходимости доверять произвольно выбранным начальным условиям; состояние, в котором существует точное равенство количеств вещества и антивещества, единственно. Наблюдаемое преобладание вещества над антивеществом можно было бы количественно объяснить на основе физической теории.
Для осуществления этой идеи, очевидно, необходимо придумать физический механизм, который нарушал бы симметрию между веществом и антивеществом, считавшуюся по традиции одним из нерушимых законов физики. В конце 70-х годов физики нашли такой механизм нарушения симметрии в виде теорий Великого объединения (ТВО).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39