Какое отношение имеет взаимодействие, или сила, к симметрии? Само предположение о существовании подобной связи кажется парадоксальным и непонятным. Сила – это то, что действует на вещество или изменяет природу частиц. Симметрия – понятие, связанное с гармонией и соразмерностью форм.
Для ответа на поставленный вопрос уточним прежде всего, что понимается под симметрией. Обычно считается, что предмет обладает симметрией, если он остается неизменным в результате той или иной проделанной над ним операции. Сфера симметрична, потому что выглядит одинаково при повороте на любой угол относительно ее центра. Арка собора симметрична, поскольку не меняет своего вида при перестановке правого и левого относительно вертикальной оси. Законы электричества симметричны относительно замены положительных зарядов отрицательными и наоборот. Число примеров можно легко увеличить.
Симметрии, на которых основан пересмотр нашего понимания четырех фундаментальных взаимодействий, совершенно особого рода. Это так называемые калибровочные симметрии. Некоторые простые примеры проявления этих абстрактных симметрий, например инвариантность законов механики относительно изменения отсчета (нулевого уровня) высоты, были приведены в гл. 4. Калибровочные симметрии связаны с идеей калибровки путем изменения отсчета уровня, масштаба или значения физической величины. Система обладает калибровочной симметрией, если ее природа остается неизменной при такого рода преобразовании. Попытаемся на простом примере разобраться, как абстрактное понятие калибровочного преобразования можно связать с более конкретным представлением о физической силе.
Представьте себе, что вы находитесь на борту космического корабля, летящего равномерно и прямолинейно в мировом пространстве вдали от планет и других небесных тел. Вы не ощущаете ни действия каких-либо сил, ни самого движения. Вы пребываете в состоянии полной невесомости и свободно парите в кабине. Вообразить такую картину не составляет особого труда.
Теперь подвергнем этот сценарий калибровочному преобразованию. Иначе говоря, попытаемся изменить описание путем калибровочного преобразования, т.е. изменения масштаба, некоторой величины, в данном случае – расстояния. Предположим, что космический корабль по-прежнему движется в пространстве с постоянной скоростью, но уже по траектории, проходящей параллельно предыдущей на расстоянии 1 км от нее. Что означало бы такое калибровочное преобразование для пассажира космического корабля? Ровно ничего, если говорить о силах. Пассажир испытывал бы те же ощущения, что и в предыдущем сценарии. Точнее, поведение физических объектов вокруг пассажира абсолютно не зависит от того, по какой прямолинейной траектории движется корабль. Ясно, что в этом примере проявляется некая симметрия. Ее можно выразить утверждением, что законы физики инвариантны (т.е. неизменны) относительно параллельного переноса (или сдвига) при калибровке расстояния. Но пока силы по-настоящему не участвовали в нашем рассмотрении.
При калибровочном преобразовании траектория космического корабля оставалась прямолинейной. Пространственный сдвиг был одинаков у всех точек траектории. Иначе говоря, калибровочное преобразование было всюду одинаковым – подобное преобразование физики называют “глобальным” калибровочным преобразованием Глобальный характер важен: если бы калибровочное преобразование непрерывно изменялось вдоль траектории космического корабля, то преобразованная траектория представляла бы собой извилистую линию. У космического корабля, запрограммированного для полета по такой траектории, должны были бы непрерывно работать двигатели, а пассажира при каждом маневре бросало бы из стороны в сторону. Он испытывал бы действие сил. Маневрирование сказалось бы на поведении всех физических объектов внутри корабля. Калибровочные преобразования, изменяющиеся от точки к точке, известны под названием “локальных” калибровочных преобразований. Совершенно очевидно, что законы физики не инвариантны относительно локальных калибровочных преобразований, искривляющих траекторию космического корабля и причиняющих пассажиру столько неприятностей. А может быть, они все же инвариантны?
Для простоты предположим, что после калибровочного преобразования космический корабль запрограммирован для полета по круговой траектории с постоянной скоростью. Астронавт ощущает кривизну траектории, так как уже не находится в состоянии невесомости. Теперь он не будет свободно парить – центробежная сила прижимает его к стенкам корабля. Физические явления на борту космического корабля, движущегося по круговой орбите, существенно отличаются от того, что происходит на борту корабля, движущегося равномерно и прямолинейно.
Представьте себе, что вы и есть тот астронавт, который описывает на борту корабля круг за кругом в космическом пространстве. Вы засыпаете и, проснувшись, обнаруживаете, что снова находитесь в невесомости. “Должно быть, – подумаете вы, – космический корабль снова летит равномерно и прямолинейно”. Но выглянув в иллюминатор, вы к своему удивлению увидите вокруг себя звезды. Каким образом, двигаясь по окружности, можно оставаться в состоянии невесомости? Посмотрев в иллюминатор на противоположной стене, вы поймете причину: корабль движется по круговой орбите вокруг планеты.
Одна из наиболее занимательных картин в реальном космическом полете – свободное парение астронавта в состоянии почти полной невесомости при движении космического корабля" по орбите вокруг Земли. То, что испытывает при этом реальный астронавт, не отличимом от ощущений астронавта, движущегося в межзвездном пространстве равномерно и прямолинейно. В этом заключен глубокий физический принцип: явления, сопровождающие полет по криволинейной траектории вокруг планеты, ничем не отличаются от происходящих при равномерном и прямолинейном движении в глубоком космосе. Причина такого совпадения ясна: гравитация (тяготение) планеты в точности компенсирует эффекты, вызванные кривизной траектории космического' корабля. Физики говорят в этом случае, что гравитация создает компенсирующее поле; она строго компенсирует отклонение системы от прямолинейного движения. Разумеется, мы выбрали простой пример кругового движения. В случае полета космического корабля по извилистой линии для компенсации понадобилось бы гораздо более сложное гравитационное поле. Но коль скоро траектория космического корабля задана, можно рассчитать и гравитационное поле, способное восстановить комфорт и невесомость пассажиров. В принципе гравитацию всегда можно использовать для устранения сильной тряски на неустойчивой траектории.
Из всего сказанного следует весьма важный вывод. Законы физики можно сделать инвариантными даже относительно локальных калибровочных преобразований, если ввести гравитационное поле для компенсации изменений от точки к точке. Физики предпочитают пользоваться обратным утверждением, а именно: гравитационное поле поддерживает в природе локальную калибровочную симметрию, возможность свободно изменять масштаб от точки к точке пространства. В отсутствие гравитации возможна только глобальная симметрия; не нарушая законов физики, можно только переходить от одной прямолинейной траектории к другой. При наличии гравитации возможно преобразование к траекториям любой формы без нарушения законов физики. Напомним, что под симметрией мы понимаем инвариантность относительно некой операции. Симметрия, о которой только что говорилось, – это инвариантность законов физики относительно любых изменений формы траектории движения. С этой точки зрения гравитационное взаимодействие представляет собой проявление абстрактной симметрии, локальной калибровочной симметрии, лежащей в основе законов реального мира. Словно Творец сказал сам себе: “Мне так нравятся красота и симметрия! Прекрасно, если. повсюду воцарится калибровочная симметрия. Да будет так! Но что я вижу? Попутно возникло и новое поле. Назовем его гравитацией”.
Значение концепции калибровочной симметрии заключается в том, что благодаря ей создается не только гравитационное, а и все четыре фундаментальных взаимодействия, встречающиеся в природе. Все их можно рассматривать как калибровочные поля. В квантовом описании калибровочные поля связаны с частицами вещества и концепцию калибровочного преобразования следует расширить, связав с фазой квантовой волны, описывающей частицу. Входить в технические детали этой процедуры вряд ли стоит. Существенно другое: в природе существует целый ряд локальных калибровочных симметрий и необходимо соответствующее число полей для компенсации этих калибровочных преобразовании. Силовые поля можно рассматривать как средство, с помощью которого в природе создаются присущие ей локальные калибровочные симметрии. С этой точки зрения, например, электромагнитное поле не просто определенный тип силового поля, существующего в природе, а проявление простейшей из известных калибровочных симметрий, совместимой с принципами специальной теории относительности. Калибровочные преобразования в этом случае соответствуют изменениям потенциала от точки к точке.
Интересно отметить, что физик-теоретик, ничего не знающий об электромагнетизме, но убежденный, что природа зиждется на симметрии, мог бы сделать вывод о существовании электромагнитных явлений, основываясь лишь на требовании простейшей локальной калибровочной симметрии и так называемой симметрии Лоренца–Пуанкаре специальной теории относительности, о которой мы упоминали в гл. 4. Используя математику и основываясь только на существовании этих двух симметрий, теоретик смог бы построить уравнения Максвелла, не проведя ни единого эксперимента по электричеству и магнетизму и даже не подозревая об их существовании. При этом он, возможно, рассуждал бы так1 коль скоро упомянутые симметрии – простейшие и наиболее утонченные, вряд ли природа не воспользовалась бы ими. Исходя из подобных чисто умозрительных соображений, теоретик пришел бы к выводу о существовании в реальном мире электромагнитных явлений. Он мог бы пойти и дальше: вывести все законы электромагнетизма, доказать существование радиоволн, возможность создания динамо-машины и т.д., т.е. совершить все те открытия, которые в действительности были сделаны на основе реальных экспериментов. Могущество математического анализа, используемого для описания явлений природы, столь велико, что позволяет предвидеть такие особенности, о существовании которых мы и не помышляли.
Калибровочная симметрия – гораздо более важное понятие, чем просто изящный математический прием. В ней скрыт ключ к построению квантовых теорий взаимодействий, свободных от разрушительного действия бесконечных членов уравнений, о чем шла речь в предыдущем разделе. Калибровочная симметрия, как оказалось, тесно связана с перенормируемостью. Чудо КЭД основано на глубокой и простой симметрии, присущей электромагнитному полю. Это наводит на мысль о том, что трудности квантового описания трех других взаимодействий, по-видимому, связаны с тем, что нам не удалось обнаружить полный набор скрытых в них симметрий. Например, если бы теорию слабого взаимодействия можно было сформулировать на языке калибровочных полей, то это способствовало бы успешному построению квантового описания этого взаимодействия.
На первый взгляд, однако, кажется, что на пути к осуществлению такой программы возникает серьезное препятствие. Одна из особенностей калибровочных полей состоит в том, что эти поля – дальнодействующие. Возможность проведения калибровочных преобразований в любой точке требует, чтобы компенсирующие поля действовали во всем пространстве. Для гравитации и электромагнетизма, простирающихся в пространстве и оказывающих влияние на удаленные объекты, это нормально, но слабое взаимодействие существует только на очень малых расстояниях. На квантовом языке это означает, что гравитон и фотон имеют нулевые массы покоя, а переносчики слабого взаимодействия, W и Z-частицы, чрезвычайно массивны. Казалось, что это кладет конец всяким попыткам описания слабого взаимодействия на языке калибровочных полей. Но в 60-е годы в столь неопровержимом на первый взгляд аргументе была обнаружена трещина, и в физике произошел один из случающихся время от” времени гигантских скачков.
8. Великая троица
Новая сила
Оглядываясь на 70-е годы, историки будут рассматривать их как время, когда ученые обнаружили, что в природе вовсе не существует никаких четырех фундаментальных взаимодействий. Электромагнитное и слабое взаимодействия, при поверхностном взгляде весьма разные по своей природе, в действительности оказались двумя разновидностями единого – так называемого электрослабого – взаимодействия, о существовании которого никто и не подозревал.
Объединение этих двух сил стало исторической вехой на пути к суперсиле. Первый шаг сделал более ста лет назад Максвелл, объединив электричество и магнетизм. Электрослабая теория в окончательной форме была создана двумя физиками, работавшими независимо, – Стивеном Вайнбергом из Гарвардского университета и Абдусом Саламом из Империал-колледжа в Лондоне, – опиравшимися на более раннюю работу Шелдона Глэшоу. Теория электрослабого взаимодействия решающим образом повлияла на развитие физики элементарных частиц в последующие годы.
Суть теории Вайнберга и Салама состоит в описании слабого взаимодействия на языке концепции калибровочного поля. Этот шаг следовало предпринять еще до того, как появилась хоть какая-то надежда на унификацию. В предыдущей главе мы говорили, что понятие калибровочной симметрии является ключевым при построении теории взаимодействий, освобожденной от проблемы расходящихся членов.
Представляя слабое взаимодействие в виде калибровочного поля, мы должны исходить из того, что все частицы, участвующие в слабом взаимодействии, служат источниками поля нового типа – поля слабых сил, хотя мы не воспринимаем это поле непосредственно. Слабо взаимодействующие частицы, такие, как электроны и нейтрино, являются носителями “слабого заряда”, который аналогичен электрическому заряду и связывает эти частицы со слабым полем.
Если поле слабого взаимодействия рассматривать как калибровочное (т.е. как способ, которым в природе компенсируются локальные калибровочные преобразования), то первый шаг состоит в установлении точной формы соответствующей калибровочной симметрии. Как мы уже знаем, простейшей калибровочной симметрией обладает электромагнетизм. Не удивительно, что симметрия слабого взаимодействия гораздо сложнее чем электромагнитного, ибо сам механизм этого взаимодействия оказывается более сложным. При распаде нейтрона, например, в слабом взаимодействии участвуют частицы по крайней мере четырех различных типов (нейтрон, протон, электрон и нейтрино), и действие слабых сил приводит к изменению их природы (превращению одних частиц в другие за счет слабого взаимодействия). Напротив, электромагнитное взаимодействие не изменяет природы участвующих в нем частиц.
Это свидетельствует о том, что слабому взаимодействию соответствует более сложная калибровочная симметрия, связанная с изменением природы частиц. С калибровочной симметрией такого типа мы встречались в конце гл. 4. Она называлась симметрией изотопического спина, или изотопической симметрией. Первоначально изотопическая симметрия была разработана для описания сильного ядерного взаимодействия между протонами и нейтронами. Напомним, что калибровочное преобразование в этом случае соответствовало повороту некой волшебной ручки, превращающему протоны в нейтроны. Основная идея состояла в том, что ядерные силы инвариантны относительно таких воображаемых преобразований. Вайнберг и Салам, заимствовав идею изотопической симметрии из области ядерной физики, приспособили ее к совершенно другой области – слабому взаимодействию, дав его описание как калибровочного поля. По существу было использовано то же понятие симметрии, связанной со смешиванием различных частиц, но в данном случае речь шла о смешивании различных источников слабого взаимодействия, электронов и нейтрино. Представим себе теперь, что у нас есть волшебная ручка, позволяющая превращать электроны в нейтрино и наоборот. По мере поворота ручки сродство с электроном у всех электронов постепенно убывает до тех пор, пока электроны не превращаются в нейтрино. Одновременно сродство с нейтрино у всех нейтрино также убывает, и все они превращаются в электроны.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39