А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

если 2 дня температура была неизменной, то она останется такой же и завтра с вероятностью 0,76; если 3 дня неизменна, то сохранится и завтра с вероятностью 0,78; если 5 дней, то с вероятностью 0,83, и если температура не менялась 10 дней, то с вероятностью 0,85 она останется той же и в 11-й день.
Как видите, предсказание по принципу «сегодня как вчера» имеет обоснование в теории вероятности. Большинство прогнозов погоды носит именно такой характер, а чтобы судить о научной мощи предсказаний, надо было бы скидывать со счетов все прогнозы типа «погода остается без изменений». Кажется, так метеорологи и поступают, когда испытывают новые теории и схемы предсказания погоды. Предвидение потепления или похолодания – вот в чем должно проявиться понимание законов климата.
Но вернемся к работе Бейеса. Мы проиллюстрировали примерами лишь одну из формул его теории, касающихся вероятности повторения событий. Но оправданы также попытки предсказания будущего и тогда, когда ряд событий неоднороден и состоит из чередующихся удач и неудач. В этом случае формула Бейеса меняется лишь незначительно: в ее знаменателе будет стоять полное число событий плюс 2. Например, если проведенная на курорте неделя (7 дней) порадовала нас всего лишь одним хорошим днем, то вероятность дождя на восьмой день нашего отдыха будет вычисляться так: P=(6+1)/(7+2)=7/9.
Если в баскетбол играет сильная команда «Спартак» со слабой командой, скажем текстильного института, и если, придя с опозданием к началу состязания, мы узнаем, что счет 1 : 10 в пользу института, то мы все же не поставим и гривенника против рубля за команду студентов. Для предсказания исхода состязания формула, о которой идет речь, явно без пользы. Она «работает» лишь в том случае, если нам ничего не известно о вероятностях выигрыша и проигрыша команд – участниц состязания. Вот если бы я не знал, кто играет, и не видел бы техники игры, тогда, зная счет 1 : 10, я действительно имел бы право сделать заключение: вероятность того, что следующее очко заработает ведущая команда, равна 11/13.
Интересно применение работы Бейеса в случаях, когда наши заключения об исходе события делаются на основании комбинации априорного (доопытного) знания и знания результата опыта. Из полной колоды карт потеряли одну. Какую – неизвестно. Некто просто «с потолка» высказывает гипотезу, что потеряна пика. Ясно, что при отсутствии какого-либо дополнительного знания вероятность этой гипотезы равняется 1/4. Вероятность противоположного утверждения, что потеряна не пика, равна 3/4. Поскольку автор первой гипотезы настаивает на проверке своего утверждения, то ставит опыт. Из колоды берутся две карты, которые оказываются пиками. Нетрудно видеть, что сторонники второй гипотезы после этого опыта укрепляются в своем мнении, а шансы авторов первой упали.

Формулы Бейеса позволяют произвести и количественные оценки. Можно рассчитать, насколько изменились вероятности гипотез после того, как получена дополнительная информация. Мы не будем приводить формулы и производить вычисления, а подчеркнем лишь идейную сторону дела.
Довольно редко дело обстоит так, что после проведенного единичного эксперимента ошибочные гипотезы смело могут быть отброшены, а единственно правильная поставлена на пьедестал почета. Большей частью разовый опыт лишь изменяет вероятность достоверности высказанных гипотез. Если одна из них «взяла верх» над другими не слишком значительно, то потребуется и второй эксперимент, а может быть, и третий, и сотый. По мере накопления информации вероятность правильной гипотезы будет постепенно расти. Впрочем, рост может быть и не монотонным, а на каком-то разе так называемая правильная гипотеза может здорово проиграть и даже совсем рухнуть. Так в примере урны с шарами дело может обстоять следующим образом: вытянув десять черных шаров, мы уже почти уверимся в том, что в ней нет шаров иного цвета, ан нет – одиннадцатый раз вытащили белый, и вопрос вновь остается открытым. В конце концов истина восторжествует и наступит ясность, и тогда опытное исследование может быть прекращено, и результат обнародован.
Имеется ряд проблем, в которых вероятности гипотез могут быть достаточно хорошо вычислены на каждом этапе исследования в зависимости от полученного объема информации. В подобных случаях планирование эксперимента может быть поручено ЭВМ. Машина будет оценивать вероятности всех гипотез после каждого шага и остановится тогда, когда вероятность одной из гипотез станет настолько значительной, что ее можно считать истиной.
Работы Томаса Бейеса лежат в основе современного подхода к эксперименту. Подход этот используется в генетических исследованиях, в теории военной стратегии, в исследовании движения ядерных частиц и во многих других областях деятельности людей.

Миллион цифр

В заголовке мы написали «миллион цифр», а точнее надо бы было сказать – миллион случайных цифр. Такая книжка, не содержащая ничего, кроме миллиона цифр, вышла в свет и нашла своих читателей. Возьмем ряд случайных цифр: 0, 1, 9, 6, 7… Что, собственно говоря, означает, что они образуют случайную последовательность? И кого интересует такой ряд? Начнем с ответа на второй вопрос.
Представьте себе, что вы проводите обширный эксперимент по агротехнике. Поле разбито на 1000 небольших участков, каждый из которых должен быть ухожен определенным способом. Пускай способов таких (агротехнических систем) 10. Занумеруем их. Теперь нужно решить, на каком участке какую агротехническую систему применить. Для этого каждому участку припишем какую-либо цифру от 0 до 9, и притом сделаем так, чтобы приписка была совершенно случайной. Только при случайной нумерации наши выводы о целесообразности того или иного способа обработки почвы будут лишены сознательной или бессознательной ошибки, связанной с тем, что для какого-то «излюбленного» способа выбираются лучшие участки.
Поручить кому-либо называть цифры наобум нельзя, нельзя даже ребенку, который не заинтересован в пропаганде ваших или еще чьих-то агротехнических теорий, нельзя потому, что, оказывается, каждый человек питает симпатию к одним и нелюбовь к другим цифрам. Поэтому «наобум» не будет означать «случайно». Ряды же случайных цифр нужны самым разным экспериментаторам: медикам и социологам, администраторам и полководцам, экономистам и метеорологам и многим-многим другим.
Нужду в случайных цифрах испытывают также и математики, решающие свои задачи так называемым методом Монте-Карло, который становится все более распространенным по мере увеличения числа электронно-вычислительных машин. Чтобы дать хоть некоторое представление об этом методе, приведем несколько простых примеров.
Мы хотим вычислить площадь произвольной сложной фигуры, какую представляет, ну скажем, Московская область на карте. Площадь всей карты найти просто – надо помножить ее ширину на длину. А как быть с фигурой причудливой формы?
Представьте себе, что на карту падают капли дождя и случайным образом усеивают карту. Подсчитаем общее число капелек и число капелек, попавших на интересующую нас Московскую область. Ясно, что отношение этих чисел должно равняться отношению площади всей карты к площади Московской области.
Разумеется, подставлять карту под дождь не надо. Каждую каплю можно представить двумя случайными числами (двумя координатами на плоскости), и тогда «заполнение площадей каплями» можно произвести мысленно. Но для этого также нужна книга случайных цифр, о которой у нас идет речь.
Еще пример. Во многих задачах требуется вычислить, через сколько времени достигнет заданного барьера некая точка, если известно, откуда она вышла, и сказано, что движется она случайными шагами одинаковой длины, но направленными как попало. Разбив это «как попало» на 10 направлений (скажем, под углами 36°, 72°, 108° и т.д.), мы можем перемещать точку при помощи книги случайных цифр.
Итак, случайные цифры нужны. Но что же такое ряд случайных цифр?
На первый взгляд безупречным выглядит следующее определение: нет правила, по которому можно было бы, закрыв пальцами любую из цифр книги, угадать, какая она, с вероятностью большей, чем 0,1 (потому что цифр 10).
Однако это определение не подходит, и вот почему. При помощи счетных машин с точностью до ста тысяч цифр после запятой вычислена величина «пи» – замечательное число, начинающееся цифрами 3,14… Если бы вы взглянули на эту последовательность, то она вам показалась бы идеально беспорядочной. Во всяком случае, вы будете действительно угадывать любую цифру лишь с вероятностью 0,1. Более того, исследуя число «пи» повнимательнее, вы найдете, что у него нет склонности к какой-либо особенной цифре и все они встречаются в среднем одинаково часто. Вы не найдете также никаких особенностей в расположении двух или трех ближайших цифровых соседей. И тем не менее тот, кто знает, что это число «пи», может предсказать каждую следующую цифру.
Но дело обстоит еще хуже для составителей книги случайных цифр, когда исследуется еще одно число. Структура числа «пи» в глаза не бросается, а вот у такого числа, как 12345678910111213141516171819…, закономерность в расположении цифр – так сказать, узор ряда – вполне ясна. В то же время оказывается, что этот ряд удовлетворяет всем требованиям беспорядочной серии: вероятность появления каждой цифры равна 0,1; двух определенных цифр рядом – 0,01; трех определенных цифр – 0,001 и т.д. То есть никакие комбинации не имеют преимуществ.
После размышлений математики пришли к такому выводу: нет ничего странного в том, что ограниченная последовательность цифр обладает некоторым узором. При этом чем длиннее серии случайных цифр, тем чаще на отдельных ее отрезках будут встречаться самые странные узоры.
Все сказанное показывает, что было бы большой ошибкой ставить знак равенства между отсутствием узора в следовании цифр, штрихов или событий, с одной стороны, и случайностью этих событий – с другой. Вот вам пример: большего «беспорядка», чем расположение звезд на небе, пожалуй, не придумаешь. Тем не менее оно полно созвездий, имеющих характерный рисунок.
В ряду случайных событий, таких, как появление «черного» и «красного» в рулетке, мы найдем и длинные ряды одинакового цвета, и ряды, в которых множество раз два «черных» чередуются с одним «красным». Будут такие случаи, когда «красного» будет больше в четные дни месяца, а «черного» – в нечетные. Найдутся последовательности месяцев, когда число 13 упорно приходится на воскресенье. Любые такие события возможны, а чтобы увидеть их, надо просто подсчитать вероятность их появления и убедиться в том, что она больше одной миллионной.
Узоры случайностей – идея абстрактной живописи Джексона Поллока. Сообщалось, что этот «художник» выплескивает как попало на длинное полотно краски с помощью разных леек, шланг, ведер. Рассуждал Поллок вполне правильно. При совершенно случайном нанесении красок на полотно на нем будут образовываться различные узоры, и не исключено, что часть из них будет смотреться с интересом и удовольствием.
Случайно возникающие узоры в форме или цвете создают красоту природы. Но беспорядок без узоров не производит впечатления; в нем нет никаких зрительных образов, которые вызывали бы у зрителя ассоциации и воспоминания. Беспорядок эмоционально беден.

Одним из способов введения порядка в беспорядок является наложение симметрии на хаотически разбросанные цветовые пятна в бессюжетной декоративной живописи. Для этого художники зачастую прибегают к услугам калейдоскопа. Нехитрое это устройство, многократно отражающее в системе зеркал случайное расположение нескольких десятков цветных пятен, создает выразительные узоры. Многие из них потом оказываются рисунками на обоях.
Мастера декоративной живописи используют часто и другие приемы введения порядка в хаос цвета и формы, например ритмическое повторение рисунка вдоль запутанного пути: спирали, зигзаги и т.д.
Декоративная живопись смело могла бы принять на вооружение таблицы случайных цифр и некоторые приемы теории вероятностей, но художники, как правило, еще сторонятся математики.
Эстетически невыразительной, по моему мнению, является и противоположная крайность в расположении цветов и форм – идеальный порядок. Справедливость этого утверждения видна из того, что даже в архитектуре идеальная симметрия и повторяемость вышли из моды.
Введением беспорядка в порядок заинтересовался один геометр, который стал известным живописцем. Пример творчества этого голландского художника Эшера читатель найдет в книге А. Шубникова и В. Копцика «Симметрия».
Довольно легко и широко стали использоваться идеи и методы теории вероятностей в музыке. Так же, как декоративная живопись, музыка (мелодия) лежит «посередине» между гудком телефона (порядок) и беготней котенка по клавишам рояля (беспорядок). Следование друг за другом нот подчиняется правилам композиции лишь отчасти. Поэтому вполне правомерно поставить вопрос о вероятности следующей ноты в рамках правил, предписанных музыке. Но об испытании «гармонии алгеброй» написано много научных работ и популярных книг. Не устоял против этой темы и я, посвятив ей несколько страниц в книге «Реникса». Там я рассказал, как, вводя различное число инструкций, накладывающих узы на хаотическое следование звуков, получают музыку различных стилей.
Такими приемами можно при желании исследовать музыкальную структуру того или иного произведения, можно характеризовать различных композиторов степенью случайности в выборе соседних звуков. Насколько мне известно, энтузиасты такого рода исследований встречаются редко. Причины надо, видимо, искать в различном духовном складе человека искусства и человека точной науки.
Цель наших замечаний сводится к тому, чтобы показать, что закономерности случая могут проявить себя в фактуре произведений искусства, а также и в том, чтобы отметить некоторые возможности использования миллиона случайных цифр в анализе предметов живописи, музыки, а может быть, и поэзии.

Телепатия – друг случайностей

Я беру монету и накрываю ее шапкой. Мне известно, какой стороной кверху она лежит. Некто берется отгадать это положение и просит меня лишь напряженно думать о том, как лежит монета, воссоздать мысленно образ этой монеты. Что ж, можно считать это игрой и заключать пари: отгадает – не отгадает.
Если кто-нибудь мне скажет, что «Этот человек великолепный отгадчик», то я смело вступлю с ним в игру и поставлю рубль, что он не отгадает, скажем, 10 раз подряд против его двух рублей. Если он не захочет ставить два рубля, то пусть ставит рубль двадцать. Если и это много, то я скажу, что он не верит в своего отгадчика, и соглашусь играть с ним, поставив свой рубль против его одного рубля и пяти копеек. Я действительно принял бы это пари и разбогател бы быстрее владельцев игорного дома в Монте-Карло. Я убежден, что нет на свете людей, которые могут угадывать, какой стороной кверху обращена монетка под шапкой, большее число раз, чем это предписывает теория вероятностей. Убежден, что передача мыслей от одного человека к другому является невозможным событием, хотя имеется некоторое число людей, придерживающихся обратного мнения. Есть также небольшое число лиц, посвятивших свое время доказательству телепатии (так называется передача мыслей). Шестьдесят лет гоняются за этой синей птицей исследователи, именующие себя парапсихологами. Они испытали телепатические способности у тысяч людей. С каждым из них провели многие сотни опытов. Парапсихологи накопили грандиозный статистический материал.
Про историю, корни, психологические аспекты увлечения телепатией и всякими другими черными и белыми магиями подробно рассказано в той же книге «Реникса». В 1971 году вышла посвященная этой теме переводная книга Ханзеля «Парапсихология» (изд-во «Мир»). Поэтому я отсылаю интересующегося читателя к этим книгам, а здесь остановлюсь на одной занятной странице телепатической истории, совершенно непосредственно связанной с темой вероятности.
В 1953 году английский натурфилософ Г. Спенсер Браун, человек, несомненно, острого ума, в английском журнале сообщил, что, по его мнению, некоторые частичные удачи в наблюдениях телепатов представляют собой не что иное, как узоры в ряду беспорядочных событий. По мнению Брауна, стоило бы поискать узоры такой же вероятности в таблицах случайных чисел. Браун писал: «Мне кажется очевидным, что статистически значимые результаты, обладающие такой же степенью “достоверности”, что и результаты телепатических экспериментов, могут быть получены простой выборкой из таблиц случайных цифр, рассматриваемых как отчет о телепатическом опыте».
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27