А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

- Тот, кто считает себя принадлежащим к типу A, должен бодрствовать, а тот, кто считает себя бодрствующим, должен принадлежать к типу A! Да такие рассуждения опираются в первую очередь на теорию Короля, а ее правильность "доказывается" с их помощью!
- Очень хорошо! - кивнул я. - Диагноз поставлен верно! В рассуждениях Черного Короля действительно содержится порочный круг!
- Значит, я был прав! - обрадовался Майкл. - Теория Черного Короля ошибочна!
- Вовсе нет! - резко возразил я. - Алиса не доказала, что его теория ошибочна. Ей удалось доказать лишь, что Черный Король не смог доказать правильность своей теории. Но ошибочность предложенного Черным Королем доказательства еще не означает ошибочности самой теории.
- Но это же глупейшая из теорий, которые я когда-нибудь слыхал! настаивал Майкл.
- Глупая - одно, логически невозможная - совсем другое, ответил я. - Согласен с тобой, что теория в высшей степени неправдоподобная, но это еще не означает, что она логически невозможна.
- В рассуждениях Короля также есть одна тонкость, которую мне хотелось бы подчеркнуть, - добавил я. - Если бы сам Король принадлежал к типу A или B, то от того, что он убежден в истинности трех доказываемых им тезисов, эти тезисы действительно стали бы истинными! Рассуждения Короля стали бы правильными, если бы мы добавили еще одну исходную посылку, предположив, что Король принадлежит к типу A или к типу B. Если Король принадлежит к одному из этих типов, то отсюда следует, что и любое другое существо также принадлежит либо к типу A, либо к типу B, то есть что теория Короля должна быть правильной.
- Все равно я считаю, что глупее, чем теория Короля, ничего не придумаешь, - сказал Майкл, как бы подводя итог нашему разговору.
Но на этом история не закончилась! Ночью Алисе приснился странный сон. Когда она ложилась спать, в голове у нее еще роилось множество необычных логических задач, которые она услышала за день. В частности, ей не давали покоя замена истины ложью и лжи истиной в рассуждениях зазеркальных логиков и теория Черного Короля.
"Возможно ли в действительности, чтобы теория Черного Короля была правильной? - размышляла Алиса. - Если да, то хотела бы я знать, к какому типу я принадлежу - к типу A или к типу B?".
И тут Алисе приснился сон. Ей снилось, что она не она, а другая Алиса, та, из Зазеркалья. Ей снилось, что она повстречала Черного Короля и указала тому на пробелы в его доказательстве. Он исправил ошибку и предложил Алисе новое доказательство, одной из посылок которого было предположение о принадлежности Короля к типу A или B. (К сожалению, проснувшись на следующее утро, Алиса не смогла припомнить новое доказательство Короля, поэтому я затрудняюсь сказать вам, в чем оно состояло!) Тем не менее во сне Алиса была полностью убеждена, что Король действительно принадлежал либо к типу A, либо к типу B и что, таким образом, всякое живое существо, как следовало из первого доказательства Короля, принадлежало либо к типу A, либо к типу B. Между Алисой и Черным Королем состоялся следующий разговор:
- Существует на свете еще одна Алиса, - сказал Король. - Сейчас она спит, и ей снится, что она - это ты.
- Необыкновенно интересно! - воскликнула Алиса. - А разве не может быть так, что это я сейчас сплю и мне снится, что я - это она?
- Это одно и то же, - ответил Король. - Какая разница?
Замечание Короля поразило Алису! Ей было совсем не понятно, почему это одно и то же.
- Как, по-твоему, какая ты Алиса, та или эта? - спросил Король.
- Сейчас я вряд ли смогу ответить на этот вопрос, - призналась Алиса.
- К какому типу ты принадлежишь - к A или B? - спросил Король.
- Боюсь, что и на этот вопрос я не смогу ответить, - призналась Алиса. - Сейчас я даже не уверена, сплю я или бодрствую.
- Позволь мне подвергнуть тебя небольшому тесту, - попросил Король. - -- Какого цвета у тебя глаза?
- Карие ... Ах нет! Думаю, что они синие ... Нет, подождите! Это зависит от того, какая я Алиса. Какая же я Алиса и какого цвета у меня глаза?
- Если позволишь, я бы сформулировал эту задачу так, - предложил Черный Король. - Бармаглот знает и тебя, и другую Алису. Когда Бармаглот спит, он убежден, что у одной из вас глаза карие, а у другой синие. Когда Бармаглот бодрствует, он убежден, что у тебя глаза карие, а у другой Алисы синие. Так скажи мне теперь, какого цвета у тебя глаза?
Решение этой нехитрой задачки я целиком предоставляю вам, дорогой читатель. Какого цвета глаза у Алисы, которую я знаю? А у другой Алисы? И еще: к какому из двух типов (A или B) принадлежит Бармаглот?
РЕШЕНИЯ
Глава 1
Кто Джон? Для того чтобы узнать, кого из двух братьев-близнецов зовут Джон, нужно спросить одного из них:
"Джон говорит правду?". Если в ответ на этот вопрос последует "да", то независимо от того, лжет ли спрошенный близнец или говорит всегда только правду, он должен быть Джоном. Если же он ответит "нет", то Джоном зовут его брата. Доказать это можно следующим образом.
Если спрошенный близнец отвечает "да", то он тем самым утверждает, что Джон говорит правду. Если это утверждение истинно, то Джон действительно говорит правду, а так как говорящий изрек истину, то его и должны звать Джоном, Если же высказанное утверждение ложно, то Джон в действительности не говорит правду. Значит, Джон лжет, как лжет и спрошенный близнец. Следовательно, и в этом случае спрошенного должны звать Джоном. Тем самым доказано, что независимо от того, говорит ли тот, к кому мы обращаемся с вопросом, всегда только правду или лжет, он должен быть Джоном (в предположении, что на наш вопрос он ответил "да").
Если же спрошенный нами ответит "нет", то тем самым он утверждает, что Джон говорит неправду. Если это утверждение истинно, то Джон не говорит правду, а если ложно, то Джон говорит правду. И в том и в другом случае спрошенный близнец поступает не так, как Джон.
Следовательно, он должен быть братом Джона. Таким образом, "нет" в ответ на заданный вопрос означает, что спрошенного зовут не Джон.
Разумеется, вопрос "Лжет ли Джон?" ничуть не хуже. "Да"
в ответ на этот вопрос означает, что спрошенный близнец не Джон, а "нет" - что его зовут Джон.
Мне удалось придумать только эти два вопроса в три слова, которые позволяют решить задачу. Интересно, есть ли другие?
* * * Во второй задаче (найти вопрос из трех слов, позволяющий установить, не лжет ли Джон) достаточно просто спросить:
"Вы не Джон?"
Предположим, что близнец, к которому мы обращаемся, отвечает "да". Он либо говорит правду, либо лжет.
Предположим, что выбранный нами близнец говорит правду.
Тогда его действительно зовут Джон, а так как он говорит правду, то Джон всегда говорит только правду.
Предположим теперь, что близнец, к которому мы обращаемся, лжет. Тогда в действительности его зовут не Джон (раз он утверждает, что его зовут Джон). Значит, он лжет и его зовут не Джон, поэтому Джоном должен быть тот из братьев, кто всегда говорит только правду. Тем самым доказано, ..что если близнец, к которому мы обращаемся с вопросом, отвечает "да", то независимо от того, лжет ли он или говорит правду, того, кто всегда говорит только правду, зовут Джоном.
Предположим теперь, что в ответ на наш вопрос мы услышали "нет". Близнец, к которому мы обратились, либо лжет, либо всегда говорит только правду. Предположим, что он говорит правду. Тогда он действительно не Джон и Джоном зовут другого брата, а поскольку другой брат всегда говорит только правду, Джоном зовут того из двух братьев, кто лжет.
Предположим теперь, что близнец, к которому мы обратились, лжет. Тогда (поскольку лжец утверждает, что он не Джон) его настоящее имя должно быть Джон, поэтому Джоном в данном случае зовут лжеца. Тем самым доказано, что если близнец, к которому мы обращаемся с вопросом, отвечает "нет", то независимо от того, лжет он или говорит правду, того, кто лжет, зовут Джоном.
Между решениями двух задач, которые решали Алиса и ее гости, имеется замечательная симметрия. Для того чтобы узнать, не зовут ли того из близнецов, к которому вы обращаетесь, Джоном, ему необходимо задать вопрос: "Лжет ли Джон?". Для того чтобы выяснить, лжет ли Джон, необходимо задать вопрос: "Вы не Джон?".
Глава 2
1. История первая. По существу, Болванщик заявил, что варенье украли либо Мартовский Заяц, либо Соня. Если Болванщик солгал, то ни Мартовский Заяц, ни Соня не украли варенье. Но тогда Мартовский Заяц, поскольку он не украл варенье, дал правдивые показания. Следовательно, если Болванщик лгал, то Мартовский Заяц не лгал, поэтому Болванщик и Мартовский Заяц не могли лгать одновременно.
Следовательно, когда Соня показала, что по крайней мере один из ее соседей, то есть либо Мартовский Заяц, либо Болванщик, не лгали, она сказала правду. Но из условий задачи мы знаем, что Соня и Мартовский Заяц не могли дать правдивые показания одновременно. Так как Соня сказала правду, Мартовский Заяц не мог дать правдивые показания.
Значит, Мартовский Заяц солгал. Его показания ложны.
Следовательно, варенье украл Мартовский Заяц.
2. История вторая. Предположим, что муку украл Мартовский Заяц. Так как тот, кто похитил муку, дал правдивые показания, Мартовский Заяц на суде сказал правду, то есть муку украл Болванщик. Но мы твердо знаем, что муку украл только один из трех обитателей домика. Следовательно, Мартовский Заяц не мог украсть муку. Значит, Мартовский Заяц невиновен. Но поскольку двое из трех подсудимых дали ложные показания на суде, Мартовский Заяц в своем выступлении на суде солгал. Неверно, что муку украл Болванщик (как утверждал Мартовский Заяц). Следовательно, ни Мартовский Заяц, ни Болванщик не могли украсть муку.
Значит, муку должна была украсть Соня.
3. История третья. Если бы кухарка украла перец, то она заведомо знала бы об этом. Следовательно, давая показания на суде (когда она заявила, что знает, кто украл перец), она сказала бы правду. Между тем мы твердо знаем, что те, кто крадет перец, никогда не говорят правды. Следовательно, кухарка Герцогини невиновна.
4. Кто же украл перец? Если перец украл Мартовский Заяц, то он лгал (потому что те, кто крадет перец, всегда лгут).
Следовательно, его утверждение о Болванщике ложно. Значит, Болванщик тоже украл перец. Но из условий задачи нам известно, что перец украл кто-то один. Следовательно, Мартовский Заяц не мог украсть перец. Так как Мартовский Заяц невиновен, его заявление на суде истинно. Значит, то, что он сказал о Болванщике, истинно. Следовательно, Болванщик также невиновен. В свою очередь это означает, что Болванщик сказал правду, поэтому Соня также невиновна.
Таким образом, никто из троих подозреваемых не крал перец.
5. Так кто же все-таки украл перец? Предположим, что Грифон был бы виновен. Это означало бы, что, выступая на суде, он солгал. Следовательно, Черепаха Квази не невиновен (как утверждал Грифон), а виновен. Но тогда виновных было бы двое, хотя перец (как говорилось в предыдущей задаче) украл кто-то один. Значит, Грифон невиновен. Но тогда на суде он сказал правду, поэтому Черепаха Квази невиновен.
Следовательно, Черепаха Квази на суде сказал правду:
виновен Омар.
6. Метазадача. Те из вас, кто читал "Приключения Алисы в Стране Чудес", должно быть, помнят, что Омар (в отличие от Грифона и Черепахи Квази) не входит в число действующих лиц знаменитой сказки Льюиса Кэрролла. Он фигурирует лишь в стихотворении "Это голос Омара", которое читает Алиса.
7. История четвертая. Предположим, что сахар украла Герцогиня. Значит, выступая на суде, она лгала.
Следовательно, ее утверждение о том, что кухарка не крала сахар, ложно. Иначе говоря, кухарка также должна была бы украсть сахар. Но как нам достоверно известно, сахар украден только одной из двух обвиняемых. Следовательно, Герцогиня не могла украсть сахар. Значит, сахар украла кухарка. (Заметим, кстати, что обе обвиняемые лгали.)
8. История пятая. Если соль съел Чеширский Кот, то все трое обвиняемых лгут, что противоречит условиям задачи. Если соль съел Ящерка Билль, то все трое всегда говорят только правду, что также противоречит условиям задачи.
Следовательно, соль съела Гусеница (поэтому первые два заявления ложны, а третье истинно).
9. История шестая. Если сковороду украл Лягушонок, то он и Валет Червей оба лгали, что по условиям задачи исключается.
Если сковороду украл Лакей-Лещ, то он и Валет Червей оба лгали, что по условиям задачи также исключается.
Следовательно, сковороду украл Валет Червей (как ни смешно, но в своем выступлении на суде он сказал правду, как и Лакей-Лещ).
10. История седьмая. Чеширский Кот не мог украсть поваренную книгу, так как в этом случае вор говорил бы правду. Следовательно, Чеширский Кот не крал поваренную книгу (а Кот и Герцогиня лгали вдвоем на суде). Если бы поваренную книгу похитила кухарка, то лгали бы все трое обвиняемых, что противоречит условиям задачи. Значит, поваренную книгу украла Герцогиня (поэтому Герцогиня лжет.
Чеширский Кот лжет, а кухарка всегда говорит только правду).
11. Продолжение седьмой истории. Чеширский Кот не мог украсть поваренную книгу по той же причине, что и в предыдущей задаче. Предположим, что поваренную книгу украла Герцогиня. Тогда Чеширский Кот лжет, а кухарка говорит правду, что противоречит условию задачи (если поваренную книгу украла Герцогиня, то двое других обвиняемых либо оба лгут, либо говорят правду). Следовательно, Герцогиня не похищала поваренную книгу. Ее украла кухарка. (Двое других обвиняемых либо оба лгут, либо оба говорят правду - в действительности оба лгут. Все трое - -- лжецы.)
12. История восьмая. Прежде всего заметим, что Соня не могла украсть масло (тот, кто украл масло, говорит правду, а Соня на суде показала, что украла молоко). Следовательно, молоко украла не Соня. Значит, масло украл либо Мартовский Заяц, либо Болванщик. Если бы масло украл Мартовский Заяц, то его утверждение о том, что масло украл Болванщик, было бы истинным (напомним, что тот, кто украл масло, говорит правду). Но тогда масло должен был бы украсть Болванщик, а это противоречит условиям задачи (масло украл кто-то один из обвиняемых). Значит, масло украл не Мартовский Заяц. Но тогда масло украл Болванщик. Следовательно, его заявление на суде истинно и яйца украла Соня. Значит, Мартовский Заяц украл молоко.
Итак. Мартовский Заяц украл молоко, Болванщик украл масло (и всегда говорит только правду), а Соня украла яйца (и всегда лжет).
13. История девятая и последняя. Если бы Белый Кролик разбирался получше в логике, то он никогда бы не сказал, что Билль говорит правду, а Валет лжет. поскольку логически невозможно, чтобы Билль говорил правду, а Валет лгал! Иначе говоря, я утверждаю, что если Билль говорит правду, то Валету не остается ничего другого, как говорить правду. Позвольте мне доказать это.
Предположим, что Ящерка Билль говорит правду. Тогда его показания на суде истинны. Значит, либо Мартовский Заяц, либо Соня говорит правду (возможно, что правду говорят оба). Предположим, что правду говорит Мартовский Заяц.
Тогда кухарка должна говорить правду (напомним, что, как показал на суде Мартовский Заяц, кухарка и Чеширский Кот говорят правду). С другой стороны, если Соня говорит правду. то кухарка должна опять-таки говорить правду (ибо так утверждала в своих показаниях на суде Соня). Таким образом, и в том и в другом случае (говорит ли правду Мартовский Заяц или Соня) кухарка должна говорить правду.
Но либо Мартовский Заяц, либо Соня говорит правду.
Следовательно, в любом случае кухарка должна говорить правду. Это доказывает, что кухарка говорит правду (разумеется, в предположении, которое мы разделяем, что Ящерка Билль сказал правду). Кроме того. Мартовский Заяц показал (и это подтвердила кухарка), что Чеширский Кот говорит правду, а Соня показала (и ее слова также подтвердила кухарка), что Гусеница говорит правду.
Следовательно, либо Чеширский Кот, либо Гусеница говорит правду (поскольку либо Мартовский Заяц, либо Соня говорит правду: если правду говорит Мартовский Заяц, то не лжет Чеширский Кот; если же правду говорит Соня, то не лжет Гусеница). Но в своих показаниях на суде Болванщик утверждал, что либо Чеширский Кот, либо Гусеница говорит правду, поэтому сам Болванщяк говорит правду. Значит, и кухарка, и Болванщик говорят правду. Именно это и утверждал Валет Червей. Таким образом. Валет Червей говорит правду (разумеется, при условии, что Ящерка Билль говорит правду).
Итак, мы доказали, что если Ящерка Билль говорит правду, то Валет Червей не может не говорить только правду. Значит, Белый Кролик лгал, когда утверждал, что Билль говорит правду, а Валет лжет. Итак, Белый Кролик - лжец.
Обратимся теперь к показаниям Алисы (их истинность не вызывает сомнений). Алиса сказала, что Белый Кролик и Герцогиня либо оба говорят правду, либо оба лгут. Говорить правду они оба не могут (так как Белый Кролик лжет).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18