Ссылаясь на эту разницу в одну мегатонну, А. Д. Сахаров в своих выступлениях на научно-техническом совете и заключительном совещании у Н. С. Хрущева продолжал доказывать, что он был прав и испытания "уральского" заряда были ни к чему. Во многом благодаря своему авторитету он продавил принятие на вооружение "арзамасского" заряда. А спустя десяток лет, когда остро встал вопрос о боеголовках для баллистических ракет подводного базирования, выяснилось, что этому заряду как раз не хватает механической прочности. При подводном старте и затем при тормозящем вхождении в плотные слои атмосферы его сохранность и боеспособность не гарантируются.
В 1960 году основатель Челябинска-70 Кирилл Иванович Щёлкин по состоянию здоровья покинул свое детище. Он совмещал две должности Научного руководителя и Главного конструктора. Научным руководителем после его ухода стал Евгений Иванович Забабахин, а на должность Главного конструктора по рекомендации Щелкина он пригласил Бориса Васильевича Литвинова. Б. В. Литвинову в то время было всего 32 года и он к тому же не состоял в КПСС. Лет пятнадцать спустя с такой анкетой его бы и близко не подпустили к столь высокой должности, а тогда ещё было можно.
В ядерные проблемы Б. В. Литвинов окунулся ещё студентом, когда приехал в Арзамасс-16 делать диплом. Диплом стал его первой научной работой. Спустя двадцать лет эта дипломная работа была опубликована в американском ядерном центре в Лос-Аламосе, как весьма актуальная. Это лишний раз подтверждает его рано проявившиеся способности, умение видеть далеко вперед и ставить перед собой сложнейшие задачи. Начав с экспериментальной работы над своим дипломным проектом, Б. В. Литвинов нащупал новый путь построения ядерного заряда. С самого начала молодому ученому, фактически ещё студенту, был предоставлен специальный каземат для взрывных работ, оборудованный сложнейшей лабораторной аппаратурой, а в помощь приданы два юных ассистента. По мере расширения экспериментов группа постепенно разрасталась. Б. В. Литвинову удалось заинтересовать своей идеей теоретиков, расчетчиков, конструкторов. Он делал доклады о ходе своих работ на научно-техническом совете, и постепенно эта работа перешла из экспериментальной в практическую плоскость. В результате получилось "изделие", которое успешно прошло испытания.
Понятно, почему Е. И. Забабахин пригласил молодого перспективного ученого. Также понятно, почему того не стали удерживать в "Приволжской конторе", ведь он мог вытеснить кое-кого из "стариков". Но сам Б. В. Литвинов не считал себя готовым к столь высокой должности. Он в это время занимал должность всего лишь заместителя начальника сектора, до Главного целая лестница из высоких служебных ступеней. Но после отмены одностороннего моратория и принятия решения о возобновлении ядерных испытаний летом 1961 года Б. В. Литвинова вызвали в ЦК КПСС и объявили о новом назначении. На фрондерское заявление ученого, что в партию он вступать не собирается, отреагировали спокойно. "Оттепель" ещё не закончилась, и талантливым ученым дозволялось многое. Впрочем, даже Берия в свое время смотрел сквозь пальцы на подобные выходки физиков.
Но приглашение на должность Главного конструктора столь молодого ученого имело и другую подоплеку. К началу 60-х стало ясно, что главным средством доставки ядерного оружия становятся ракеты. Самолеты с атомными бомбами стали слишком уязвимы для средств ПВО. А разработкой боевых ракет занимались коллективы, костяк которых составляли молодые конструктора. И для взаимодействия с ними требовались столь же молодые ядерщики, которые не будут давить авторитетом и связями в верхах.
В те годы обозначилось одно из основных направлений работы ВНИИТФ миниатюризация ядерных устройств. Если раньше развитие ядерного оружия шло по пути увеличения мощности, глобализации, то теперь встал вопрос о создании зарядов малой мощности для решения тактических задач. Это была серьезная задача, так как малые размеры критической массы заряда и всего изделия в целом резко снижали степень надежности конструкции. В связи с этим предстояло решить большое количество сложных инженерных и технологических задач.
Еще одним важным направлением деятельности ВНИИТФ стали ракетные стратегические комплексы для Военно-Морского Флота, крылатые ракеты, авиабомбы, артиллерийские снаряды. Под руководством Е. Забабахина коллектив центра с этими задачами справился. В 60-е годы на вооружение стали поступать малогабаритные атомные авиабомбы, которые могли доставляться к месту применения уже не стратегическими тяжелыми бомбардировщиками, а сверхзвуковыми штурмовиками и истребителями фронтовой авиации. Были созданы глубинные ядерные бомбы, способные поражать подводные лодки, находящиеся не только на значительной глубине, но и подо льдом.
Немного позже здесь были созданы самый малоразмерный ядерный заряд для артиллерийского снаряда калибром 152 миллиметра, самый легкий боевой блок для разделяющихся головных частей ракет стратегического назначения, самый экономный по расходу делящихся материалов ядерный заряд.
Центр занимается проектированием и обычных вооружений. В его активе более 20 разработок боевых частей для зенитных управляемых ракет класса "земля-воздух", ракет "воздух-земля" и противоракет.
Особая глава в истории Уральского центра - разработка специализированных ядерных зарядов с регулируемой мощностью, малыми габаритами и малым количеством остаточного трития. Это промышленные термоядерные устройства повышенной "чистоты", использовавшиеся при гашении пожаров на аварийных нефтяных и газовых скважинах, для создания подземных резервуаров и коллекторов, для геологической сейсморазведки.
Термоядерный заряд для мирного, промышленного, использования создать сложней, чем для военных целей. Главное условие - минимальное количество осколков деления и остаточного трития. И такой заряд создан в ВНИИТФ. Он создан теоретиком Аврориным, а Главным конструктором, естественно, стал Литвинов. Заряд достаточно чистый в плане радиоактивного заражения местности, хотя его ещё можно совершенствовать. Впрочем, смысла нет, так как использование ядерных взрывов в мирных целях по предложению6 американцев тоже запрещено. Они существенно отставали от наших ученых в этих разработках, потому и возражали против подобной практики.
Впервые в народно-хозяйственных целях ядерные заряды взорвали под землей с целью погасить аварийные нефте-газовые фонтаны. Иногда мощные фонтаны горят годами, миллионы тонн ценнейшего природного сырья превращаются в сажу, которая загрязняет огромные площади. Такие сильные пожары может погасить только ещё большая сила. Взрывы для гашения горящих фонтанов используются давно, но обычно это взрывы наземные, когда на огонь выбрасывается большая масса земли. Подземный ядерный взрыв позволяет передавить скважину на глубине и прекратить выброс газа.
Первопроходцами здесь стали специалисты Арзамаса-17, погасившие фонтан на месторождении Артабулак штатным боевым зарядом. Уральским ученым из ВНИИТФ досталась аварийная скважина на другом среднеазиатском месторождении - Памук. Особенность её состояла в том, что газ не только вырывался фонтаном, но растекался подземными горизонтами и вы ходил наружу в самых разных местах. Посовещавшись, уральцы решили создать специальный заряд, чтобы в дальнейшем это "изделие", став серийным, могло использоваться для решения различных промышленных задач. Такой заряд вскоре был создан и испытан на полигоне. После этого его доставили на место и опустили в специально пробуренную скважину. Взрыв мощностью 30 килотонн перекрыл выход газа. Толчок ощущался в Бухаре и Карши как небольшое землетрясение.
Были проведены эксперименты на отработанных нефтяных месторождениях. С помощью глубинного взрыва пытались повысить их нефтеотдачу. Результаты обнадеживали, но эксперименты пришлось прервать. В 1976 году был заключен договор, разрешавший только камуфлетные взрывы, то есть производимые на большой глубине под землей, что полностью исключало выход радации. А вот взрывы у поверхности запрещались полностью, хотя в Челябинске-70 уже были созданы заряды, имевшие минимальную остаточную радиоактивность. По сути это были "чистые" бомбы.
Всего в Советском Союзе было произведено 128 взрывов в промышленных целях. Это не только тушение аварийных скважин, но и геофизические - для проведение сейсморазведки, создание подземных резервуаров для газового конденсата, для интенсификации нефтедобычи с глубинных горизонтов. В засушливой зоне Казахстана было создано искусственное озеро, глубина которого достигала ста метров. Имелись обширные планы - отвалка плотин, вскрышные работы на месторождениях в малонаселенных районах, но всем этим планам не суждено сбыться.
Сокращение, а по сути прекращение, оборонных программ и проблемы с финансированием поставили институт в сложные условия. Договора об ограничении и всеобщем запрещении испытаний ядерного оружия ограничили и сузили исследовательские возможности. Сейчас перед учеными и инженерами стоят конверсионные задачи. Как раз для контроля соблюдения договоров здесь были созданы аппаратурные комплексы геофизических исследований и гидродинамических измерений. С их помощью можно отслеживать даже слабые ядерные подземные взрывы.
УРАЛЬСКИЙ СТАРТ
"Зато мы делаем ракеты!" - пелось в веселой песенке застойного времени. Песенка была фрондерская, в некотором роде даже диссидентская, и слова эти звучали с ехидцей. Мол, ракеты делаем, а пылесос приличный слабо. Прошло время, фиги в карманах потеряли свою социально-политическую актуальность, и строчка эта, оторвавшись от контекста приобрела совсем иное звучание. Ну и что, что Малайзия и Сингапур с Тайванем могут весь мир пылесосами и магнитолами завалить? Зато мы делаем ракеты!
Ракетная тема для Запада довольно болезненна. Потому что баллистическая ракета - это средство доставки ялерного оружия. Или, в зенитном варианте, средство поражения чужих средств доставки - самолетов, ракет, кораблей, подводных лодок. Да, мы делали ракеты, запускали в космос корабли, и весь мир мог увидеть и оценить наш оборонный потенциал.
Но путь к космическим высотам оказался тернист. Более того, мы рисковали навсегда отстать от Америки в этом вопросе. А начиналось все замечательно. Именно в России, в Калуге жил учитель Константин Циолковский, на чьих идеях стоит современная космонавтика, каким бы чудаком его ни пытались представить недалекие "публицисты". А ещё имелась целая плеяда талантливых энтузиастов реактивного движения. В 1930-е годы были разработаны несколько образцов ракет с жидкостными реактивными двигателями. Но, естественно, под утопическую на тот момент идею покорения космоса никто денег не дал, зато на научные изыскания в военных целях ассигнования отпускались. Поэтому наш рассказ надо начинать с создателей легендарной "катюши".
Было их шестеро. Николай Иванович Тихомиров (1860-1930) - организовал Газодинамическую лабораторию (ГДЛ) и решил проблему устойчивого горения бездымного пороха в ракетной камере.
Борис Сергеевич Петропавловский (1898-1933) - возглавил газодинамическую лабораторию после смерти Тихомирова, продолжил опытно-конструкторские работы до стадии официальных испытаний.
Иван Терентьевич Клейменов (1899-1938) - начальник ГДЛ с 1932 года, первый начальник Реактивного научно-исследовательского института (РНИИ). Способный организатор, при котором были определены пути развития реактивной артиллерии.
Георгий Эрихович Лангемак (1898-1938) - заместитель начальника и главный инженер РНИИ. Внес самый большой вклад в создание "катюши". Его теоретические исследования и практические разработки позволили довести характеристики реактивного снаряда до уровня, позволившего принять его на вооружение.
Владимир Андреевич Артемьев (1885-1962) - ближайший помощник Н. И. Тихомирова, талантливый изобретатель и конструктор. Его исследования горения пороховых зарядов сыграли существенную роль в разработке реактивных снарядов.
Юрий Александрович Победоносцев (1907-1973) - начиная с 1934 года работал над созданием реактивной артиллерии, провел важнейшие исследования по внешней и внутренней баллистике реактивных снарядов.
К 1937 году были практически отработаны реактивные снаряды РС-82 (калибр 82 мм) и РС-132 (калибр 132 мм). Успешно велись проектно-конструкторские работы по темам: ракетный истребитель-перехватчик, крылатая ракета весом 150 кг с дальностью полета 50 км, управляемая (!) крылатая ракета класса "воздух - воздух". Можно предполагать, что за четыре года, остававшиеся до начала войны, в РНИИ было бы создано принципиально новое эффективное оружие. Ведь конструировали это люди, которые потом в считаные годы вывели Россию в космос.
Но в 1938 году начались аресты среди руководства и ведущих сотрудников. Делалось это по доносам очень посредственного, а, может, и попросту бездарного инженера Костикова. Были расстреляны Лангемак и Клейменов, посажены будущие академики В. П. Глушко, С. П. Королев и др. Костиков стал начальником института. Он запатентовал установку залпового огня, к созданию которой не имел ни малейшего отношения, и начал "руководить". Когда началась война, стало понятно, что Реактивный институт с 1938 года не создал ничего, истратив при этом огромные средства. Было принято решение о снятии Костикова, но тут под Оршей батарея реактивных минометов капитана Флерова дала первый боевой залп по фашистам. Впервые с начала войны гитлеровцы бежали с поля боя, бросая горящую технику. Костикову присвоили звание Героя Социалистического труда за оружие, авторство которого он присвоил. Но в 1944 году его все-таки сняли с должности "за развал работы, граничащий с преступлением". Но ворованная слава опять спасла его. Отсидев два месяца, Костиков вышел на волю и мирно скончался в 1950 году в звании генерал-майора, будучи членом-корреспондентом и Героем. И по сию пору иногда всплывает на страницах книг и газет как изобретатель "катюши".
А тем временем в Германии шло бурное развитие ракетных технологий. По Версальскому договору Германия не могла иметь артиллерию, но в нем ничего не было сказано о ракетах. А ракета с жидкостным реактивным двигателем, по крайней мере, теоретически могла заменить дальнобойную ствольную артиллерию. В 1929 году в Германии была создана военная лаборатория по разработке ракетной техники. В начале 1930-х году туда пришел первый штатский специалист - 20-летний студент Вернер фон Браун, затем талантливый механик Генрих Грюнов. В 1934 году первые ракеты поднялись на высоту 2000 метров. На перспективные разработки были ассигнованы солидные средства, построен мощный исследовательско-испытательный центр "Пенемюнде". В начале мировой войны уже проводились опытные пуски тяжелых ракет, а потом начались и широкомасштабные боевые пуски. Тысячами запускались крылатые ракеты "Фау-1" и баллистические "Фау-2", причем не только со стартовых площадок, и но и с железнодорожных платформ ("Фау-2"), и с самолетов-носителей ("Фау-1"). Испытывалась также твердотопливная ракета "Рейнботе" длиной более 11 метров. Примерно 20 таких ракет было выпущено в ноябре 1944 года по Антверпену. Прошла испытания и была готова к серийному производству зенитная ракета "Вассерфаль", другую подобную ракету "Тайфун" не успели завершить. Были и другие проекты.
После Победы наши ученые, равно как и американцы, были поражены, обнаружив, чего достигли немцы. В оккупированной Германии развернулась охота за секретами ракетных технологий. Американцы из советской зоны до подхода наших войск вывезли 300 вагонов груза с предприятия по производству "Фау-2", в том числе около ста готовых ракет. А были и другие объекты, по которым они прошлись более тщательно. Им же досталась документация и ведущие инженеры. Более ста специалистов во главе с самим Вернером фон Брауном были вывезены в США. Именно бывший член нацистской партии фон Браун стал отцом американской космонавтики и ракетостроения.
Уже в 1945 году англичане провели первые опытные пуски "Фау". Обучали их опытные профессионалы, множество раз запускавшие ракеты в направлении Англии. Советские специалисты тоже обследовали немецкие предприятия и лаборатории. Был среди них и выпущенный к тому времени на свободу Сергей Королев. Наши тоже вернулись не с пустыми руками - собрали комплектующих на несколько десятков "Фау-2", капитально ознакомились с базой в Пенемюнде, разыскали кое-кого из специалистов. В частности, один из ближайших сотрудников Вернера фон Брауна - Гельмут Герттруп с семьей был вывезен в СССР и продолжил работу над система управления.
Один из американских специалистов однажды высказался, что добытые в Германии ракеты, документы и специалисты сэкономили им 50 миллионов долларов и пять лет работы.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
В 1960 году основатель Челябинска-70 Кирилл Иванович Щёлкин по состоянию здоровья покинул свое детище. Он совмещал две должности Научного руководителя и Главного конструктора. Научным руководителем после его ухода стал Евгений Иванович Забабахин, а на должность Главного конструктора по рекомендации Щелкина он пригласил Бориса Васильевича Литвинова. Б. В. Литвинову в то время было всего 32 года и он к тому же не состоял в КПСС. Лет пятнадцать спустя с такой анкетой его бы и близко не подпустили к столь высокой должности, а тогда ещё было можно.
В ядерные проблемы Б. В. Литвинов окунулся ещё студентом, когда приехал в Арзамасс-16 делать диплом. Диплом стал его первой научной работой. Спустя двадцать лет эта дипломная работа была опубликована в американском ядерном центре в Лос-Аламосе, как весьма актуальная. Это лишний раз подтверждает его рано проявившиеся способности, умение видеть далеко вперед и ставить перед собой сложнейшие задачи. Начав с экспериментальной работы над своим дипломным проектом, Б. В. Литвинов нащупал новый путь построения ядерного заряда. С самого начала молодому ученому, фактически ещё студенту, был предоставлен специальный каземат для взрывных работ, оборудованный сложнейшей лабораторной аппаратурой, а в помощь приданы два юных ассистента. По мере расширения экспериментов группа постепенно разрасталась. Б. В. Литвинову удалось заинтересовать своей идеей теоретиков, расчетчиков, конструкторов. Он делал доклады о ходе своих работ на научно-техническом совете, и постепенно эта работа перешла из экспериментальной в практическую плоскость. В результате получилось "изделие", которое успешно прошло испытания.
Понятно, почему Е. И. Забабахин пригласил молодого перспективного ученого. Также понятно, почему того не стали удерживать в "Приволжской конторе", ведь он мог вытеснить кое-кого из "стариков". Но сам Б. В. Литвинов не считал себя готовым к столь высокой должности. Он в это время занимал должность всего лишь заместителя начальника сектора, до Главного целая лестница из высоких служебных ступеней. Но после отмены одностороннего моратория и принятия решения о возобновлении ядерных испытаний летом 1961 года Б. В. Литвинова вызвали в ЦК КПСС и объявили о новом назначении. На фрондерское заявление ученого, что в партию он вступать не собирается, отреагировали спокойно. "Оттепель" ещё не закончилась, и талантливым ученым дозволялось многое. Впрочем, даже Берия в свое время смотрел сквозь пальцы на подобные выходки физиков.
Но приглашение на должность Главного конструктора столь молодого ученого имело и другую подоплеку. К началу 60-х стало ясно, что главным средством доставки ядерного оружия становятся ракеты. Самолеты с атомными бомбами стали слишком уязвимы для средств ПВО. А разработкой боевых ракет занимались коллективы, костяк которых составляли молодые конструктора. И для взаимодействия с ними требовались столь же молодые ядерщики, которые не будут давить авторитетом и связями в верхах.
В те годы обозначилось одно из основных направлений работы ВНИИТФ миниатюризация ядерных устройств. Если раньше развитие ядерного оружия шло по пути увеличения мощности, глобализации, то теперь встал вопрос о создании зарядов малой мощности для решения тактических задач. Это была серьезная задача, так как малые размеры критической массы заряда и всего изделия в целом резко снижали степень надежности конструкции. В связи с этим предстояло решить большое количество сложных инженерных и технологических задач.
Еще одним важным направлением деятельности ВНИИТФ стали ракетные стратегические комплексы для Военно-Морского Флота, крылатые ракеты, авиабомбы, артиллерийские снаряды. Под руководством Е. Забабахина коллектив центра с этими задачами справился. В 60-е годы на вооружение стали поступать малогабаритные атомные авиабомбы, которые могли доставляться к месту применения уже не стратегическими тяжелыми бомбардировщиками, а сверхзвуковыми штурмовиками и истребителями фронтовой авиации. Были созданы глубинные ядерные бомбы, способные поражать подводные лодки, находящиеся не только на значительной глубине, но и подо льдом.
Немного позже здесь были созданы самый малоразмерный ядерный заряд для артиллерийского снаряда калибром 152 миллиметра, самый легкий боевой блок для разделяющихся головных частей ракет стратегического назначения, самый экономный по расходу делящихся материалов ядерный заряд.
Центр занимается проектированием и обычных вооружений. В его активе более 20 разработок боевых частей для зенитных управляемых ракет класса "земля-воздух", ракет "воздух-земля" и противоракет.
Особая глава в истории Уральского центра - разработка специализированных ядерных зарядов с регулируемой мощностью, малыми габаритами и малым количеством остаточного трития. Это промышленные термоядерные устройства повышенной "чистоты", использовавшиеся при гашении пожаров на аварийных нефтяных и газовых скважинах, для создания подземных резервуаров и коллекторов, для геологической сейсморазведки.
Термоядерный заряд для мирного, промышленного, использования создать сложней, чем для военных целей. Главное условие - минимальное количество осколков деления и остаточного трития. И такой заряд создан в ВНИИТФ. Он создан теоретиком Аврориным, а Главным конструктором, естественно, стал Литвинов. Заряд достаточно чистый в плане радиоактивного заражения местности, хотя его ещё можно совершенствовать. Впрочем, смысла нет, так как использование ядерных взрывов в мирных целях по предложению6 американцев тоже запрещено. Они существенно отставали от наших ученых в этих разработках, потому и возражали против подобной практики.
Впервые в народно-хозяйственных целях ядерные заряды взорвали под землей с целью погасить аварийные нефте-газовые фонтаны. Иногда мощные фонтаны горят годами, миллионы тонн ценнейшего природного сырья превращаются в сажу, которая загрязняет огромные площади. Такие сильные пожары может погасить только ещё большая сила. Взрывы для гашения горящих фонтанов используются давно, но обычно это взрывы наземные, когда на огонь выбрасывается большая масса земли. Подземный ядерный взрыв позволяет передавить скважину на глубине и прекратить выброс газа.
Первопроходцами здесь стали специалисты Арзамаса-17, погасившие фонтан на месторождении Артабулак штатным боевым зарядом. Уральским ученым из ВНИИТФ досталась аварийная скважина на другом среднеазиатском месторождении - Памук. Особенность её состояла в том, что газ не только вырывался фонтаном, но растекался подземными горизонтами и вы ходил наружу в самых разных местах. Посовещавшись, уральцы решили создать специальный заряд, чтобы в дальнейшем это "изделие", став серийным, могло использоваться для решения различных промышленных задач. Такой заряд вскоре был создан и испытан на полигоне. После этого его доставили на место и опустили в специально пробуренную скважину. Взрыв мощностью 30 килотонн перекрыл выход газа. Толчок ощущался в Бухаре и Карши как небольшое землетрясение.
Были проведены эксперименты на отработанных нефтяных месторождениях. С помощью глубинного взрыва пытались повысить их нефтеотдачу. Результаты обнадеживали, но эксперименты пришлось прервать. В 1976 году был заключен договор, разрешавший только камуфлетные взрывы, то есть производимые на большой глубине под землей, что полностью исключало выход радации. А вот взрывы у поверхности запрещались полностью, хотя в Челябинске-70 уже были созданы заряды, имевшие минимальную остаточную радиоактивность. По сути это были "чистые" бомбы.
Всего в Советском Союзе было произведено 128 взрывов в промышленных целях. Это не только тушение аварийных скважин, но и геофизические - для проведение сейсморазведки, создание подземных резервуаров для газового конденсата, для интенсификации нефтедобычи с глубинных горизонтов. В засушливой зоне Казахстана было создано искусственное озеро, глубина которого достигала ста метров. Имелись обширные планы - отвалка плотин, вскрышные работы на месторождениях в малонаселенных районах, но всем этим планам не суждено сбыться.
Сокращение, а по сути прекращение, оборонных программ и проблемы с финансированием поставили институт в сложные условия. Договора об ограничении и всеобщем запрещении испытаний ядерного оружия ограничили и сузили исследовательские возможности. Сейчас перед учеными и инженерами стоят конверсионные задачи. Как раз для контроля соблюдения договоров здесь были созданы аппаратурные комплексы геофизических исследований и гидродинамических измерений. С их помощью можно отслеживать даже слабые ядерные подземные взрывы.
УРАЛЬСКИЙ СТАРТ
"Зато мы делаем ракеты!" - пелось в веселой песенке застойного времени. Песенка была фрондерская, в некотором роде даже диссидентская, и слова эти звучали с ехидцей. Мол, ракеты делаем, а пылесос приличный слабо. Прошло время, фиги в карманах потеряли свою социально-политическую актуальность, и строчка эта, оторвавшись от контекста приобрела совсем иное звучание. Ну и что, что Малайзия и Сингапур с Тайванем могут весь мир пылесосами и магнитолами завалить? Зато мы делаем ракеты!
Ракетная тема для Запада довольно болезненна. Потому что баллистическая ракета - это средство доставки ялерного оружия. Или, в зенитном варианте, средство поражения чужих средств доставки - самолетов, ракет, кораблей, подводных лодок. Да, мы делали ракеты, запускали в космос корабли, и весь мир мог увидеть и оценить наш оборонный потенциал.
Но путь к космическим высотам оказался тернист. Более того, мы рисковали навсегда отстать от Америки в этом вопросе. А начиналось все замечательно. Именно в России, в Калуге жил учитель Константин Циолковский, на чьих идеях стоит современная космонавтика, каким бы чудаком его ни пытались представить недалекие "публицисты". А ещё имелась целая плеяда талантливых энтузиастов реактивного движения. В 1930-е годы были разработаны несколько образцов ракет с жидкостными реактивными двигателями. Но, естественно, под утопическую на тот момент идею покорения космоса никто денег не дал, зато на научные изыскания в военных целях ассигнования отпускались. Поэтому наш рассказ надо начинать с создателей легендарной "катюши".
Было их шестеро. Николай Иванович Тихомиров (1860-1930) - организовал Газодинамическую лабораторию (ГДЛ) и решил проблему устойчивого горения бездымного пороха в ракетной камере.
Борис Сергеевич Петропавловский (1898-1933) - возглавил газодинамическую лабораторию после смерти Тихомирова, продолжил опытно-конструкторские работы до стадии официальных испытаний.
Иван Терентьевич Клейменов (1899-1938) - начальник ГДЛ с 1932 года, первый начальник Реактивного научно-исследовательского института (РНИИ). Способный организатор, при котором были определены пути развития реактивной артиллерии.
Георгий Эрихович Лангемак (1898-1938) - заместитель начальника и главный инженер РНИИ. Внес самый большой вклад в создание "катюши". Его теоретические исследования и практические разработки позволили довести характеристики реактивного снаряда до уровня, позволившего принять его на вооружение.
Владимир Андреевич Артемьев (1885-1962) - ближайший помощник Н. И. Тихомирова, талантливый изобретатель и конструктор. Его исследования горения пороховых зарядов сыграли существенную роль в разработке реактивных снарядов.
Юрий Александрович Победоносцев (1907-1973) - начиная с 1934 года работал над созданием реактивной артиллерии, провел важнейшие исследования по внешней и внутренней баллистике реактивных снарядов.
К 1937 году были практически отработаны реактивные снаряды РС-82 (калибр 82 мм) и РС-132 (калибр 132 мм). Успешно велись проектно-конструкторские работы по темам: ракетный истребитель-перехватчик, крылатая ракета весом 150 кг с дальностью полета 50 км, управляемая (!) крылатая ракета класса "воздух - воздух". Можно предполагать, что за четыре года, остававшиеся до начала войны, в РНИИ было бы создано принципиально новое эффективное оружие. Ведь конструировали это люди, которые потом в считаные годы вывели Россию в космос.
Но в 1938 году начались аресты среди руководства и ведущих сотрудников. Делалось это по доносам очень посредственного, а, может, и попросту бездарного инженера Костикова. Были расстреляны Лангемак и Клейменов, посажены будущие академики В. П. Глушко, С. П. Королев и др. Костиков стал начальником института. Он запатентовал установку залпового огня, к созданию которой не имел ни малейшего отношения, и начал "руководить". Когда началась война, стало понятно, что Реактивный институт с 1938 года не создал ничего, истратив при этом огромные средства. Было принято решение о снятии Костикова, но тут под Оршей батарея реактивных минометов капитана Флерова дала первый боевой залп по фашистам. Впервые с начала войны гитлеровцы бежали с поля боя, бросая горящую технику. Костикову присвоили звание Героя Социалистического труда за оружие, авторство которого он присвоил. Но в 1944 году его все-таки сняли с должности "за развал работы, граничащий с преступлением". Но ворованная слава опять спасла его. Отсидев два месяца, Костиков вышел на волю и мирно скончался в 1950 году в звании генерал-майора, будучи членом-корреспондентом и Героем. И по сию пору иногда всплывает на страницах книг и газет как изобретатель "катюши".
А тем временем в Германии шло бурное развитие ракетных технологий. По Версальскому договору Германия не могла иметь артиллерию, но в нем ничего не было сказано о ракетах. А ракета с жидкостным реактивным двигателем, по крайней мере, теоретически могла заменить дальнобойную ствольную артиллерию. В 1929 году в Германии была создана военная лаборатория по разработке ракетной техники. В начале 1930-х году туда пришел первый штатский специалист - 20-летний студент Вернер фон Браун, затем талантливый механик Генрих Грюнов. В 1934 году первые ракеты поднялись на высоту 2000 метров. На перспективные разработки были ассигнованы солидные средства, построен мощный исследовательско-испытательный центр "Пенемюнде". В начале мировой войны уже проводились опытные пуски тяжелых ракет, а потом начались и широкомасштабные боевые пуски. Тысячами запускались крылатые ракеты "Фау-1" и баллистические "Фау-2", причем не только со стартовых площадок, и но и с железнодорожных платформ ("Фау-2"), и с самолетов-носителей ("Фау-1"). Испытывалась также твердотопливная ракета "Рейнботе" длиной более 11 метров. Примерно 20 таких ракет было выпущено в ноябре 1944 года по Антверпену. Прошла испытания и была готова к серийному производству зенитная ракета "Вассерфаль", другую подобную ракету "Тайфун" не успели завершить. Были и другие проекты.
После Победы наши ученые, равно как и американцы, были поражены, обнаружив, чего достигли немцы. В оккупированной Германии развернулась охота за секретами ракетных технологий. Американцы из советской зоны до подхода наших войск вывезли 300 вагонов груза с предприятия по производству "Фау-2", в том числе около ста готовых ракет. А были и другие объекты, по которым они прошлись более тщательно. Им же досталась документация и ведущие инженеры. Более ста специалистов во главе с самим Вернером фон Брауном были вывезены в США. Именно бывший член нацистской партии фон Браун стал отцом американской космонавтики и ракетостроения.
Уже в 1945 году англичане провели первые опытные пуски "Фау". Обучали их опытные профессионалы, множество раз запускавшие ракеты в направлении Англии. Советские специалисты тоже обследовали немецкие предприятия и лаборатории. Был среди них и выпущенный к тому времени на свободу Сергей Королев. Наши тоже вернулись не с пустыми руками - собрали комплектующих на несколько десятков "Фау-2", капитально ознакомились с базой в Пенемюнде, разыскали кое-кого из специалистов. В частности, один из ближайших сотрудников Вернера фон Брауна - Гельмут Герттруп с семьей был вывезен в СССР и продолжил работу над система управления.
Один из американских специалистов однажды высказался, что добытые в Германии ракеты, документы и специалисты сэкономили им 50 миллионов долларов и пять лет работы.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23