А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 


Ученые назвали это вещество хлорофиллом (от греческих «хлорос» — зеленый и «филлон» — лист). Начало было положено.
Вильштеттер (1872–1942), сын торговца текстилем, немецкий биохимик, свои научные интересы связал с растительными пигментами (хлорофилл — один из них). В 1913 году вместе с ближайшим учеником Артуром Штоллем он выпустил фундаментальный труд «Исследования хлорофилла». В 1915 году за эти работы Вильштеттер был удостоен Нобелевской премии по химии.
Научные результаты школы Вильштеттера были значительны.
Тимирязев писал позднее, что работа Вильштеттера «останется надолго исходной точкой в дальнейшем изучении хлорофилла, и будущий историк отметит два периода в этом изучении — до Вильштеттера и после „него“».
«Прежде всего Вильштеттер, — пишет Ю Г Чирков, — выделил в зелени два начала — хлорофилл а (он самый важный) и хлорофилл b. Второе достижение: Вильштеттер установил химический состав молекулы хлорофилла.
Присутствие в хлорофилле углерода, водорода, азота, кислорода ожидалось. Но магний — это для ученых был сюрприз! Хлорофилл оказался первым соединением в живой ткани, содержащим этот элемент.
И, наконец, третье: Вильштеттер задался целью определить, у всех ли растений хлорофилл одинаков? Ведь сколько на планете разных растений, как сильно разнятся условия их обитания, так неужели все они обходятся одной и той же, так сказать, стандартной молекулой хлорофилла?
И тут Вильштеттер вновь показал свой научный характер. Ни у современников, ни у потомков не должно было возникнуть и тени сомнений в достоверности добытых им фактов!
Гигантский труд длился целых два года. В Цюрих, где в то время работал Вильштеттер, многочисленные помощники доставляли тьму растений из самых разных мест. Растения наземные и водные, из долин и со склонов гор, с севера и юга, из рек, озер и морей. И из каждого полученного экземпляра извлекали хлорофилл и тщательно анализировали его химический состав».
В итоге ученый убедился, что состав хлорофилла везде одинаков!
За красный цвет крови «отвечает» гем. В основе и гема, и хлорофилла лежит порфин. «…Ханс Фишер в начале изучал гем, — отмечает Чирков. — Дробя эту молекулу, он вскоре убедился: ее основу составляет порфин. Кольцо из колечек. То же было и у хлорофилла. Отличие заключалось лишь в хвостиках, коротких цепочках атомов, прикрепленных к восьми углам порфина…
Труд Фишера по расшифровке и синтезу гема был увенчан Нобелевской премией. Но ученый не захотел успокоиться на достигнутом: теперь его увлекла загадка хлорофилла.
Быстро было установлено: основу хлорофилла составляет все тот же порфин IX, однако вместо атома железа в него „вкраплен“ атом магния (присутствие последнего доказал еще Вильштеттер)…
…Продолжая свои научные розыски, Фишер убедился: в том месте, где у молекулы гема висит трехуглеродный хвостик, у молекулы хлорофилла торчит громадный хвостище — двадцатиуглеродная цепь, названная фитолом…
Сейчас в любом учебнике по физиологии растений можно найти „портрет“ этой знаменитой молекулы. Структурная формула хлорофилла занимает целую страницу. Хотя истинные его размеры предельно скромны — 30 ангстрем…
Молекула хлорофилла похожа на головастика: у нее плоская квадратная голова (хлорофиллин) и длиннющий хвост (фитол). В центре головы, словно глаз циклопа или алмаз в царской короне, красуется атом магния.
Если оторвать у головастика фитольный хвост, а атом магния заменить атомом железа, получим гем. И будто по волшебству, изменится цвет пигмента: зеленое станет красным!»
Американец Дрэпер, а вслед за ним англичанин Добени и немцы Сакс и Пфеффер в результате проведенных экспериментов сделали вывод, что наиболее интенсивно фотосинтез происходит в желтых лучах солнечного света.
С этим мнением не согласился русский ученый Тимирязев.
Климент Аркадьевич Тимирязев (1843–1920) родился в старинной дворянской семье. Начальное образование мальчик получил дома.
Затем Климент поступил на естественное отделение физико-математического факультета Петербургского университета. Студенты-естественники всегда отличались демократизмом настроений, и этот факультет считался традиционным началом пути русских разночинцев. На втором курсе Тимирязев отказался подписать обязательство о том, что не будет заниматься антиправительственной деятельностью. За это он был исключен из университета. Однако, учитывая выдающиеся способности юноши, ему было разрешено продолжать образование вольнослушателем.
Поскольку в России научная карьера для Тимирязева оказалась закрытой из-за его неблагонадежности, сразу после окончания университета он уезжает за границу. Молодой ученый работает в лабораториях крупнейших биологов Франции — П. Бертло и Ж. Буссенго, а также проходит стажировку в Германии у физика Кирхгофа и физиолога Гельмгольца. В одном из немецких университетов ему присуждают степень доктора.
Вернувшись в Россию, Тимирязев начинает работать в Петровской земледельческой и лесной академии. В 1871 году после защиты диссертации «Спектральный анализ хлорофилла» он был избран экстраординарным профессором Петровской сельскохозяйственной академии. Сегодня эта академия носит имя Тимирязева В 1875 году после защиты докторской диссертации «Об усвоении света растением» Тимирязев стал ординарным профессором.
Первая книга Тимирязева посвящена популяризации идей Чарлза Дарвина. Он практически первый открыл их для русской науки и впервые ввел дарвинизм в качестве учебного курса для студентов.
Большую часть жизни Тимирязев посвятил исследованиям хлорофилла. Его блестящая книга «Жизнь растения» (1878) выдержала десятки изданий на русском и иностранных языках.
В ней он на ярких примерах показал, как питается, растет, развивается и размножается зеленое растение. Тимирязев обладал редким даром ученого-популяризатора, который умел очень просто объяснить научные явления даже неискушенному читателю.
Для того чтобы опровергнуть вывод, будто бы максимум фотолиза имеет место в желтых лучах, и доказать, что этот максимум приходится на красные лучи, Тимирязев проводит целую серию тщательно продуманных экспериментов.
Он сам создает точнейшие приборы для практического доказательства правильности своих теоретических выводов. Тимирязев показал, что ошибочные выводы Дрэпера явились результатом неверно поставленных опытов. Непременным условием успешности этих опытов является чистота спектра. Чтобы спектр был чистым, т. е. чтобы каждый его участок был четко отграничен от других, щель, через которую проходит луч света, должна быть не шире 1–1,5 миллиметра. Используя известные в то время методы газового анализа, Дрэпер вынужден был использовать щель размером до 20 миллиметров в диаметре. В результате спектр получался крайне нечистым. Наибольшее смешение лучей при этом имело место в средней, желто-зеленой части, которая становилась от этого почти белой, слегка окрашенной в желтый цвет. Именно здесь Дрэпер и нашел максимальный эффект фотосинтеза.
Тимирязев в своих опытах добился устранения ошибки, допущенной Дрэпером. В своем исследовании относительного значения различных лучей спектра в процессе фотосинтеза, произведенном летом 1868 года, он достигает этого путем применения так называемых светофильтров. В данном случае исследование интенсивности фотосинтеза в различных лучах солнечного света проводится не в спектре, а в отдельных лучах, изолированных от остальных лучей с помощью цветных жидкостей.
Тимирязеву удалось установить, что хлорофилл наиболее полно поглощает красные лучи. Именно в этих лучах была обнаружена им также и наибольшая интенсивность фотосинтеза, что указывало на решающую роль хлорофилла в изучаемом явлении.
Вскрыв ошибочность опытов Дрэпера, Тимирязев прекрасно понимал в то же время, что точных результатов, подтверждающих его гипотезу о зависимости фотосинтеза от степени поглощения данных лучей зеленым листом и от количества их энергии, можно добиться лишь при помощи опытов, произведенных непосредственно в спектре. Задумав целый комплекс исследований в этом плане, Тимирязев прежде всего обращает внимание на изучение свойств хлорофилла.
Исследования Тимирязева наглядно показали, как он сам говорил, «космическую роль растений». Он называл растение посредником между солнцем и жизнью на нашей планете. «Зеленый лист, или, вернее, микроскопическое зеленое зерно хлорофилла является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия солнца, а с другого берут начало все проявления жизни на земле. Растение — посредник между небом и землею. Оно истинный Прометей, похитивший огонь с неба. Похищенный им луч солнца горит и в мерцающей лучине, и в ослепительной искре электричества. Луч солнца приводит в движение и чудовищный маховик гигантской паровой машины, и кисть художника, и перо поэта».
Благодаря исследованиям Тимирязева в науке прочно утвердился взгляд на растение как на замечательный аккумулятор солнечной энергии.
Сегодня нет никаких сомнений: хлоропласт — это созданный природой аппарат для фотосинтеза, а доказал это теперь очевидное положение в 1881 году Теодор Вильгельм Энгельман (1843–1909), немецкий физиолог, автор выдающихся работ по физиологии животных.
Как отмечает Чирков: «Решение задачи было чрезвычайно остроумным. Помогли бактерии. У них нет фотосинтеза, зато они, как люди и животные, нуждаются в кислороде. А кислород выделяют клетки растений. В каких именно местах? А вот это и есть то, что надо выяснить!
Энгельман рассуждал так: бактерии соберутся в тех частях растительной клетки, где выделяется кислород, эти места и будут центрами фотосинтеза.
В каплю воды поместили бактерии и растительную клетку. Все это закрыли стеклом, края тщательно замазали вазелином: чтоб воспрепятствовать доступу кислорода под стекло из воздуха.
Если теперь все это устройство немного продержать в темноте, то бактерии, потребив весь кислород в жидкости, перестанут двигаться.
Теперь решающее: перенесем наше устройство на столик микроскопа и будем освещать растительную клетку так, чтобы лучи света падали на различные ее части (а остальное находилось в тени). И вот легко убедиться: бактерии начинают двигаться лишь тогда, когда луч света упадет на один из хлоропластов…
Так, наконец, было четко показано: хлоропласты — это те фабрички, где растение умело переплавляет луч света в химические вещества, а содержащийся в хлоропластах хлорофилл катализирует этот процесс».
Русский ботаник Андрей Сергеевич Фаминцин (1835–1918) доказал, что этот процесс может идти и при искусственном освещении.
В 1960 году газеты США и других стран оповестили мир о том, что известный американский химик-органик Роберт Берне Вудворд (1917) добился небывалого — осуществил синтез хлорофилла.
ОСНОВЫ ИММУНОЛОГИИ
Среди инфекционных болезней, которым человечество веками платило дань своими жизнями, оспа занимала одно из первых мест. В Европе в XVIII веке ежегодно погибало от нее около 440 тысяч человек. Еще больше оставалось на всю жизнь изуродованными, а иногда и слепыми. Особенно велика была смертность от оспы среди маленьких детей и бедняков.
Сегодня мы знакомы с натуральной оспой только из книг. И это благодаря оспопрививанию. В нашей стране оспа ликвидирована с 1937 года, а по всему миру она исчезла к 1980 году. И благодарить за это человечество должно Эдварда Дженнера, английского врача.
Интересно, что способ предупреждения заболевания оспой Дженнер открыл, когда еще никто не знал возбудителя этой болезни. Помогли ему наблюдательность, трудолюбие, целеустремленность.
Дженнер был простым сельским врачом, когда обратил внимание на то, что люди, заразившиеся «коровьей оспой», не заболевают натуральной человеческой оспой. Дело в том, что у некоторых животных: коров, свиней, ослов и других — наблюдается болезнь, очень сходная с человеческой оспой. У животных на вымени и коже появляются гнойные пузырьки. Доярки рассказывали Дженнеру, что все они, как правило, заболевают «коровьей оспой» и уже потом не боятся натуральной. Лишь иногда во время эпидемии некоторые из них чувствовали небольшое недомогание.
Много лет занимался Дженнер изучением вопроса, прежде чем решился провести опыт на человеке. И вот 14 мая 1796 года он привил восьмилетнему мальчику Джону Фиппсу гной с руки женщины, заразившейся коровьей оспой. Через несколько дней после небольшого недомогания мальчик был полностью здоров. Но стал ли он невосприимчив к натуральной оспе? Нужен был другой опыт, очень рискованный, когда на карту будет поставлено не только здоровье, но и жизнь ребенка.
Вскоре в этой местности вспыхивает эпидемия натуральной оспы. И Дженнер, взяв гной из пузырька больного, заражает им Джона Фиппса Ребенок не заболел!
Не сразу метод оспопрививания был признан в мире. Очень гневались церковники, считая это противным Богу. Многие врачи отнеслись к нему скептически. Ходили даже слухи, что у привитых людей вырастают рога и хвост. И все-таки оспопрививание победило.
Умирая в 1823 году на 74-м году жизни, Дженнер знал, что его способ борьбы с оспой оказался благодеянием для человечества. В честь него были выбиты памятные медали, в городах возводились памятники.
Но научный смысл оспопрививания был тогда еще неизвестен. Оставалось ждать еще 58 лет, пока это не сделает Луи Пастер. Пастер в отличие от Дженнера создал научный метод, приложимый ко всем инфекционным заболеваниям и основанный на точных экспериментах.
К семидесятым годам девятнадцатого столетия научные заслуги Пастера получают всеобщее признание. В 1872 году австрийское правительство присуждает ему премию за работу о болезнях шелковичных червей. В 1873 году он избирается во Французскую медицинскую академию и в том же году получает золотую медаль Лондонского королевского общества. Французское правительство назначает ему национальную дотацию пожизненно.
В 1879–1880 годах ученый изучает куриную холеру. «Он изолировал культуру возбудителя этой болезни и, регулярно пересевая ее на питательных средах, всегда убеждался в том, что введение этих бактерий курам неизбежно вызывало их смерть самое позднее через два дня, — пишет в своей книге А.А. Имшенецкий. — Однажды обстоятельства сложились так, что он не производил пересевы культуры и она простояла в термостате в аэробных условиях длительное время. Впрыскивание этой культуры микроба не вызвало гибели птиц. Когда же у Пастера снова была в руках вирулентная культура, он ввел ее как птицам, которым никогда не вводились эти бактерии, так и тем, которым уже впрыскивалась ранее культура, находившаяся в термостате и не вызвавшая их гибели. Результаты этих опытов оказались несколько неожиданными. Все куры, которым предварительно были введены бактерии, остались живы, те же, которым культура ранее не вводилась, вскоре погибли. Повторение опытов дало те же результаты. Эти, казалось бы, весьма скромные по своим результатам опыты позволили Пастору прийти к заключению, что: 1) длительное хранение культуры возбудителя куриной холеры в термостате при доступе воздуха приводит к ослаблению ее вирулентности; 2) предварительное введение ослабленной культуры курам делает их невосприимчивыми к этой болезни.
Так родилась идея о предохранительных прививках, которая была затем использована Пастером в его последующих работах с патогенными бактериями. Трудно переоценить значение вывода, который был сделан им из этих наблюдений. Был найден принцип, приложение которого стало реальным по отношению к самым различным инфекциям. Открылись широкие перспективы для экспериментального изменения вирулентности у патогенных культур с целью получить материал, необходимый для прививок. Некоторые современники Пастера всячески подчеркивали „случайный“ характер открытия, но роль случая в научных открытиях иногда склонны переоценивать, не понимая, что самое существенное заключается не в самом наблюдении, а в гениальном умении экспериментатора обобщить и предвидеть».
Установленный Пастером в его исследованиях с куриной холерой принцип ослабления вирулентности патогенных бактерий позволил ему провести аналогичные опыты с сибиреязвенной палочкой. Этот микроб образовывал споры, и очевидно, что вводить в живой организм споры патогенного микроба не имело смысла. Установив, что при 42–43 градусах Цельсия возбудитель сибирской язвы растет, но не образует спор, Пастер в дальнейшем поступил с ним точно таким же образом, как с возбудителем куриной холеры. Он получал микроб, в той или иной мере утративший вирулентность, но сохранивший иммуногенность. Проверка таких культур выяснила, что их введение животным приводит к тому, что последние уже не погибают при впрыскивании им вирулентной культуры.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68