А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Другой философ и врач Марцелл в IV веке нашей эры рекомендовал надевать магнитное ожерелье при головной боли.
Знахари уверяли, что магнит возвращает молодость, красоту и здоровье. Об этом писал Гебер, или Джабир ибн Хайян, потому что именно так звучало его арабское имя на пороге VIII и IX веков. И лишь позже латинисты переделали его в Гебера.
Великий Авиценна (Ибн Сина) — Абу Али Хусейн ибн Абдаллах — в XI веке лечил магнитом селезенку, а Альберт Фон Больштедт — алхимик XIII века — считал, что ношение кольца с магнитом на левой руке избавляет человека от ночных кошмаров. Не потому ли, много лет спустя, уже в просвещенных XVII и XVIII столетиях достопочтенный сэр Исаак Ньютон, весьма неравнодушный к тайнам алхимических превращений, носил перстень с сильнейшим магнитом. Его магнитный камень притягивал к себе груз, превышающий его вес в 50 раз.
Много писал о целебных свойствах магнита и Другой арабский врач — знаменитый Аверроэс, настоящее имя которого звучало слишком сложно для европейского уха — Абул-Валид Мухаммед, ибн Ахмед. Он жил в ХII веке в Кордове и, как все средневековые врачи" утверждал, что толченый магнит с водой — прекрасное слабительное.
После работ Агриппы Неттесгеймского, Парацельса, других врачей и специалистов по различным вопросам магии магнит стали широко использовать в качестве лечебного средства против нервных болезней.
Все это Гильберт, разумеется, знал. В его арсенале находились и методы лечения знаменитого Парацельса, который отдавал должное магниту… В общем — понятно. Королеве исполнилось семьдесят. И ее волновала проблема сохранения если не молодости, то здоровья, залогом чего, как известно, является прежде всего исправное функционирование августейшего желудка.
Отдадим Гильберту должное. После многолетних опытов и исследований он осмелился, несмотря на авторитеты, утверждать, что прием толченого магнитного камня внутрь «вызывает мучительные боли во внутренностях, чесотку рта и языка, ослабление и сухотку членов…». Правда, он не протестовал против того, что девушкам тот же магнит «возвращает красоту лица и здоровье… поскольку сильно сушит и стягивает, не причиняя вреда».
Некоторое противоречие имеется, конечно. Ну а представьте на минутку себя на месте лейб-медика. Многие годы вы занимаетесь опытами с магнитом и уверяете королеву, что ищете способ сохранить ее драгоценное для подданных здоровье. И за это получаете приличное вознаграждение. Но затем выпускаете в свет ученый труд, из которого ясно, что лекарства, коими вы пользовали своих пациентов, могут лишь ухудшать их самочувствие. После такого откровения карьера лейб-медика могла прийти к концу… Гильберт был умен и не понимать этого не мог.
Представим себе, что королева и двор — в Виндзоре, в красивейшем месте графства Беркс. От центра Лондона примерно километров двадцать. Здесь, на правом берегу Темзы, еще в XI веке Вильгельм Завоеватель построил замок. Потом его много раз перестраивали, украшали, имв конце концов он стал любимым местом жительства английских королей.
В Виндзоре всегда весело: охота, театральные представления, торжественные приемы. Правда, возраст королевы уже не тот, не та прыть… Сегодня она предпочитает тихие развлечения. И потому на вечер назначена демонстрация чудес доктора Гильберта с магнитами. А вот и он сам: слегка лысоват, высок, лет шестидесяти. Бритый подбородок выдает в нем человека, не принадлежащего к придворной аристократии. Одет скромно: в черном атласном камзоле с испанским воротником и в плаще. Висячие усы не позволяют заподозрить в нем священника. Он переставляет различные предметы на столе, приготовленном для показа опытов. Все ждут королеву.
— Ваше величество! — Гильберт говорит мягко, приятным голосом, как и подобает врачу. — Я собираюсь, если будет на то божья воля, не умаляя заслуг тех, кто говорил о том до меня, изложить здесь перед вами открытую мною с помощью многих трудных и дорогостоящих экспериментов истину, которая противоречит мнению многих других философов, даже самых древних… Почему магнитная стрелка, применяемая на кораблях вашего доблестного флота, одержавшего беспримерную победу над Великой Армадой, всегда показывает одно направление? Почему? — Он поднимает над головой шар. — Этот шар, выточенный с немалыми расходами из магнитного камня, я назвал тереллой. Что означает маленькая земля — «земелька». Я подношу к ней магнитную стрелку, и вы видите? Джентльмены все видят, как один конец стрелки притягивается к одному полюсу тереллы, а другой — к другому. Не так ли ведут себя и стрелки компасов, установленных на кораблях флота ее величества? И не значит ли это, что и вся наша Земля является одним «большим магнитом»?
Гильберт водит железной стрелкой по поверхности тереллы.
— Взгляните, ваше величество, на разных удалениях от полюсов стрелка по-разному наклоняется к горизонту. Это открыл верный подданный вашего величества Роберт Норман — строитель компасов, доказав тем самым, что точка притяжения магнита находится не на небе… — он слегка поклонился в сторону лорда адмиралтейства: зачем важивать себе врагов при дворе? — а на земле.
Вперед протиснулись два адмирала. В те времена умели достаточно точно определять по высоте светил, на какой широте находится судно в открытом море, но никто не знал, как определять долготу.
Наши моряки верят, что стрелку притягивают, огромные железные горы, которые скрыты во льдах на севере. Мореплаватели рассказывают, что эти ужасные горы притягивают неосторожно приблизившиеся корабли и вытягивают из них гвозди, так что те разваливаются, обрекая на гибель команду…
Гильберт терпеливо напоминает об арабских сказках, повествующих о подобных же случаях, и добавляет:
— Взгляните, как ведет себя стрелка возле тереллы. Ее наклонение уменьшается к экватору, тогда как на магнитных полюсах она стремится встать торчком. Нет, джентльмены, все дело в том, что наша Земля, как и терелла, — магнит…
Гильберт кладет маленькие магнитные стерженьки в легкие кораблики и пускает их плавать в корыто с водой. Всплескивают руками дамы, наблюдая, как устремляются под действием притяжения разноименных полюсов друг к другу легкие суденышки и как расходятся они, стоит повернуть магнитики навстречу друг другу одноименными концами. Присутствующие в восторге.
Наконец королева зевнула. Ученая беседа утомила ее и давно наскучила остальным. Лишь Бэкон, казалось, был готов слушать до бесконечности, но его глаза так часто загорались блеском сдерживаемого возражения, что Гильберт старался не смотреть в его сторону. Он тоже устал. Не доверяя слугам, после ухода придворных он собрал свои приборы и ушел почти незамеченным.
«Из доказательств наилучшее есть доказательство опытом, — напишет Бэкон спустя несколько лет и тут же добавит: — Однако нынешние опыты бессмысленны. Экспериментаторы скитаются без пути, мало продвигаясь вперед, а если найдется серьезно отдающийся науке, то и он роется в каком-нибудь опыте, как Гильберт в магнетизме». Странное высказывание для того, кто во главу всей новой науки требовал поставить экспериментальный метод. Но Бэкон — противоречивая натура, и трудно сказать, насколько принципиальные побуждения двигали им в оценках трудов современников.
Зато совсем иначе звучит отзыв Галилея, жившего в то же время: «Величайшей похвалы заслуживает Гильберт… за то, что он произвел такое количество новых и точных наблюдений. И тем посрамлены пустые и лживые авторы, которые пишут не только о том, чего сами не знают, но и передают все, что пришло им от невежд и глупцов».
К сожалению, сам Гильберт об этой блестящей оценке уже узнать не мог. В марте 1603 года умерла королева, а несколько месяцев спустя и ее врач.
Все свое имущество Гильберт завещал Лондонскому обществу медиков. Однако большой пожар уничтожил приборы. И остались лишь сочинение «О магните…» да имя на обложке. Но много ли нового узнали мы о магнетизме и магните за промчавшиеся столетия?
Сегодня магнетизм широко применяется в науке и технике. Явления магнетизма важной составляющей вошли в основу нашей цивилизации.
Ну а почему Земля — магнит? Как возникает магнитное поле, и что является его носителем? Какое влияние оказывает магнитное поле на жизнь?
Увы, главные свой тайны «черный камень из страны магнетов» по-прежнему хранит в неприкосновенности.
А что же Гильберт? Сохранилась ли должная память о нем в наш перегруженный информацией век? Какой памятник мы, потомки, поставили великому создателю науки о магнетизме, подарившему нам еще и термин «электричество»?
В память о нем единица напряженности магнитного поля в международной системе единиц «СИ» называется сегодня «гильберт». И прав английский поэт Джон Драйден, написавший, что «Гильберт будет жить, пока магнит не перестанет притягивать».
Магнитное притяжение. XX век
Что мы понимаем под магнетизмом в наши дни? Прежде всего — это совокупность явлений, обусловленных магнитным воздействием, которое передается и осуществляется с помощью магнитного поля.
Честно говоря, я бы не стал утверждать категорически, что приведенная выше формулировка дает полную ясность человеку, ну скажем… чисто гуманитарного образования. Что такое — магнитное поле? И вообще, в чем заключается механизм взаимодействия? Помните: земля притягивает подброшенный камень, магнит притягивает железо, электрон-янтарь притягивает сор.
Mы часто употребляем слова, не очень задумываюсь над их внутренним смыслом. Возьмем хотя бы слово «взаимодействие». Два сотрудника заняты одним делом — они взаимодействуют. Два собеседника беседуют. И это — взаимодействие. На спортивной площадке две команды играют в волейбол: игроки одной команды, взаимодействуя друг с другом, не дают упасть мячу на землю.
Не значит ли это, что взаимодействие — совместное действие отдельных частей, объединенных этим взаимодействием в систему? А почему бы и нет? Прекратился разговор, вы разошлись, распалась система из двух собеседников. Закончилась игра в мяч — нет. больше команд, нет игровой системы.
Всякое действие предполагает обмен силами. А что является переносчиком этих сил? В разговоре — слова. В игре — мяч. А в окружающей природе?
Пожалуй, самым первым видом взаимодействия, на которое обратил внимание человек, было взаимодействие тяготеющих масс — гравитация, или тяготение. Ведь это оно обеспечивает всем предметам на Земле их вес, а подброшенному камню — возвращение к поверхности. Оно же определит движение спутников вокруг планет, планет — вокруг звезд, а потом и самих звезд и даже галактик…
Следующим по старшинству шло электромагнитное взаимодействие. Электромагнитные силы по своему действию оказались похожими на гравитационные. Они также проявляются на большие расстояния и ослабевают постепенно, обратно пропорционально квадрату расстояния между ними. Изучая их проявление, ученые создали стройную теорию электромагнитного поля, во многом похожую на классическую механику. И вопрос о том, что же является переносчиком сил, ученых сначала особенно не беспокоил.
Но в начале XX века возникла квантовая теория Макса Планка и теория фотоэффекта, предложенная Альбертом Эйнштейном, и они заставили физиков посмотреть — на явления под иным углом зрения. Оказалось, что для электромагнитных сил переносчиками являются фотоны, световые частицы, — или кванты.
Представьте себя с приятелем в паре. Условие вашего совместного существования — взаимодействия — постоянный обмен мячом, как в баскетболе — задерживать его у себя нельзя, но и бросить на произвол судьбы вы не имеете права. Чем мяч легче и меньше, тем дальше вы можете отойти, друг от друга, перебрасываясь им, тем больше у вас свободы. А если, это не мяч, а чугунное ядро от старинной пушки?
А, теперь, разделим, электромагнитное взаимодействие, на два — электрическое и магнитное. При электрическом носителями сил являются элементарные, маленькие, заряды-электроны. А при магнитном взаимодействии?
Давайте подойдем к вопросу с другой стороны. Сегодня мы знаем, что все вещества в той или иной степени обладают магнитными свойствами. Одна меньше, другие больше. Магнитные поля существуют у многих космических тел и играют важную роль в фундаментальных, астрофизических и космогонических явлениях. Магнитные моменты есть и у электронов, протонов и нейтронов, из которых построены атомы. Но как же они взаимодействуют, чем обмениваются?
Магнитные свойства многих, веществ мы знаем и с успехом применяем в электро — и радиотехнике, в автоматике и вычислительной технике, в телемеханике, в морской и космической, навигации, в геофизических методах разведки полезных ископаемых, наконец, для контроля качества металлических изделий, но… как же все-таки притягивает один постоянный магнит другой? Как взаимодействуют их магнитные поля?
В 1931 году замечательный английский, физик Поль Адриен Морис Дирак опубликовал статью, в котой наряду с фундаментальным квантом электричества — электроном, обладающим единичным, электрическим зарядом, ввел и фундаментальный квант магнетизма — частицу, обладающую, единичным магнитным зарядом, магнитный полюс. Он тут же получил название монополя. Дирака, или просто — монополя.
С электричеством, все было в порядке. Электрон был открыт еще в 1897 году английским физиком Джозефом Джоном Томсоном. Развитие теории электрона, способствовало созданию теории относительности. Из нее выросла физика XX века — квантовая теория взаимодействия.
А зачем нам магнитный монополь? Неужели только для того, чтобы наглядно понять магнитное взаимодействие? Конечно, нет! Мы бы сконструировали из них источники невиданных энергий, создали бы микрогенераторы и микродвигатели, построили бы ускорители в сто раз более мощные, чем существующие сегодня, для разгона заряженных частиц. Мы бы осчастливили медиков и биологов, мы бы… Да что там говорить! Разве мог кто-нибудь в 1897 году сказать, к чему приведет открытие крошечного электрона! Так и сегодня — трудно даже перечислить, что могло бы дать нам получение магнитного монополя!
Первый эксперимент был поставлен в том же году, когда вышла статья Дирака. Ученые пытались найти монополь опытным путем. Однако их постигла неудача. Следующая попытка была совершена в начале сороковых годов. Снова неудача! 1951 год — тот же нулевой результат при поиске монополей в потоках космических лучей. Затем исследовали метеориты. Опять ничего! Начиная с 1959 года — поиски на самых мощных ускорителях мира, в глубинах Тихого океана…
Нет, нет и нет!
В 1975 году, — во второй половине августа, почти все газеты и многие журналы мира опубликовали сообщение о том, что группа американских физиков под руководством Прайса нашла следы неизвестной частицы, которая, может быть, могла бы претендовать на роль магнитного монополя… Большинство ученых отнеслось к этому сообщению скептически. А поскольку результат эксперимента не повторился, то открытия магнитного монополя пока, увы, не состоялось.
Существует мнение, что монополи слишком тяжелы, чтобы их можно было бы открыть на современном ускорителе. Теоретики предполагают, что значение массы монополя может быть более трех тысяч масс протона. А на такие частицы нашим земным ускорителям еще долго не будет хватать энергии.
А может быть, никаких магнитных монополей в природе не существует? Но тогда непонятной становится причина, почему их нет. В чём заключается принцип запрета на их существование?
Вот вам и простой древний магнит! Он еще далеко, не раскрыл своих тайн человеку. И кто знает, когда это произойдет…
Глава 3

Чудо магнитного притяжения
Простая вещь компас, а все-таки поведение стрелки, всегда упорно тянущейся к Северному полюсу, производит впечатление чуда. Альберт Эйнштейн писал об этом в своей «Творческой биографии»: «Чудо такого рода я испытал ребенком 4, или 5 лет, когда мой отец показал мне компас. То, что эта стрелка ведет себя так определенно, никак не подходило к тому роду явлений, которые могли найти себе место в моем неосознанном мире понятий (действие через прикосновение). Я помню еще и сейчас — или мне кажется, что помню) — что этот случай произвел на меня глубокое и длительное впечатление. За вещами должно быть еще что-то, глубоко скрытое…»
Кто изобрел компас — неизвестно. Разные народы приписывают себе эту честь. Говорили, что в древние времена у китайцев уже существовали повозки, снабженные «указателем юга», прибором, который не давал заблудиться странникам. Может быть, это и были первые компасы?
В Европе этот прибор появился в XII веке. Во всяком случае, о нем есть упоминания в хрониках, относящихся примерно к этому времени. Но знали тогда о свойствах магнита мало.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31