Откроем страницу 832: «Молния, гигантский электрический искровой разряд между облаками или между облаками и земной поверхностью, длиной несколько километров, диаметром десятки сантиметров и длительностью десятые доли секунды. Молния сопровождается громом».
В обоих определениях не очень много общего. Это и понятно. С тех пор как люди перестали видеть в явлениях природы «гнев божий», о шаровой молнии написано много заметок, статей, книг, и все равно никто из ученых не знает, как она образуется и почему существует,
Вот характеристика этого удивительного явления, составленная по огромному количеству наблюдений;
1. Внутренняя энергоемкость — от 0, 1 до 4 кВт*ч;
2. Время существования — от нескольких секунд до 4 мин;
3. Масса — от 0, 5 до 50 г;
4. Плотность — от 0, 0013 до 0, 015 г/см3.
Какая точность!
Одним из первых ученых, вполне сознательно описавшим шаровую молнию, был Доминик Франсуа Араго. Правда, и он больше спрашивал, чем объяснял: «Как и где образуются эти скопления весомой материи, сильно пропитанные веществом молний? Какова их природа? По этому поводу в науке существует пробел, который необходимо заполнить».
Эти слова он писал в середине прошлого века в книге «Гром и молния». В 1885 году ее перевели и издали у нас в Петербурге.
Араго был уверен, что шаровая молния — это шар с гремучими газами (соединением азота с кислородом), насквозь пропитанный «веществом молнии». Такой шар, по мнению ученого, возникал в грозовых облаках, заряжался наподобие конденсатора электричеством разных знаков и падал на землю. Изолятором в таком конденсаторе мог служить сухой, уплотненный электрическими силами слой воздуха между заряженными оболочками.
В случае «пробоя» изоляции искра поджигала гремучие газы, и шар взрывался. Если же «пробоя» не происходило, электрическая энергия могла тихо «стечь» с шара, и он так же тихо исчезал.
К сожалению, в гипотезе Араго ни слова не говорилось о «молниевой материи», игравшей не последнюю роль в жизни шаровой молнии.
Потом было еще много предположений о природе этого загадочного явления. Одни авторы считали, что шаровая молния несет в себе весь запас имеющейся энергии. Другие предполагали, что источник ее находится вне шаровой молнии.
Может возникнуть вопрос: если положение дел настолько неопределенно, то как могли составить ту конкретную характеристику, которую я привел? Ведь там даны и масса, и плотность, будто шаровую молнию взвесили и пощупали, есть даже энергоемкость. Как ее определили?
В 1936 году в редакцию английской газеты «Дейли мейл» пришло письмо от читателя из графства Херфордшир. Вот что он писал:
"Сэр! Во время грозы я видел большой раскаленный шар, спустившийся с неба. Он ударил в наш дом, перерезал телефонные провода, зажег оконную раму и затем исчез в кадке с водой, стоявшей под окном.
Вода кипела затем в течение нескольких минут, но когда она достаточно остыла, чтобы можно было поискать шар, я ничего не смог обнаружить в бочке.
У. Моррис. Дорстоун, Херфорд".
Королевский астроном, которого попросили прокомментировать это письмо, сообщил: "По-видимому, то, что видел ваш корреспондент, представляет собой очень редкое явление, известное под названием… «шаровой молнии».
Сообщение вызвало интерес среди ученых, и они подсчитали примерную энергию, затраченную на кипячение воды в кадушке. Получилось от одного до 3 киловатт-часов. Это, в свою очередь, позволило оценить удельную энергоемкость шаровой молнии как минимум в 100 киловатт-часов.
Аналогичное явление наблюдал у нас в Закарпатье, близ города Перечина, С.С. Мах. «В августе 1962 года, — писал он, — около 11-12 часов вечера в корыто с водой для скота упала шаровая молния размером с теннисный мяч: она светилась цветами радуги в течение около 10 секунд. Вода из корыта полностью выкипела, на дне лежали сварившиеся лягушки. Размер корыта 0, 3x2, 5 метра. Глубина слоя воды — 15 см. В двух других корытах также были обнаружены сварившиеся лягушки».
В этом случае описываемая шаровая молния должна была иметь значительно большую удельную энергоемкость. Ведь масса выкипевшей воды — почти 100 килограммов.
Из чего же должна состоять шаровая молния, чтобы произвести такое действие? Это наверняка не «горючее вещество», потому что тогда оно должно обладать фантастической эффективностью. Напомню, что даже такое «идеальное горючее», как газ ацетилен, имеет энергоемкость во много-много раз меньшую.
Ученые выдвигали множество гипотез о природе шаровой молнии. И каждую из них время и новые факты низводили с пьедестала.
Интересны представления о шаровой молнии, развитые советским физиком Я. И. Френкелем в 1940 году.
«Яков Ильич Френкель был человеком, которого про сто оскорбляло существование непонятных физических явлений… Широко эрудированный физик, он обладал удивительной способностью сопоставлять весьма отдаленные области знания и в то же время легко, отвлекаться от досадных мелочей, часто заслоняющих основные черты явления».
Он считал шаровую молнию вихрем из смеси твердых частиц дыма и пыли с химически активными газообразными продуктами, которые образуются в результате удара обычной молнии. Такой вихрь из раскаленных частиц ярко светится. А циркуляция ионов в нем приводит к возникновению сильного магнитного поля, которое стягивает весь клубок в шар и способствует сохранению его формы.
И действительно, многочисленные наблюдатели отмечают «любовь» шаровых молний к печным трубам и дымоходам. Есть даже свидетельства появления огненных шаров зимой, во время метелей и снегопадов. Не значит ли это, что для существования шаровой молнии необходимы твердые частицы дыма и сажи, пыли и снежинок?
После взрыва-разряда шаровой молнии в воздухе остается дымок с острым запахом.
По расчетам Я.И. Френкеля, энергоемкость шаровой молнии как максимум — 0, 03 кВт-ч, то есть на три с лишним порядка меньше той, что дают подсчеты англичан.
Нет, похоже, что теория, основывающаяся на энергии горения газов, для объяснения природы шаровой молнии не годится. Тогда вернулись к гипотезе чисто электрической природы этого явления. И такое предположение рассматривалось учеными. В 1960 году появилась статья Е. Хилла. В ней он сравнивал шаровую молнию с миниатюрным грозовым облаком, электрические заряды в котором разделены ударом обычной линейной молнии. В небольшом объеме собираются сгустки электрических зарядов различных знаков. Представим себе шаровую молнию, состоящую, как матрешка, из вложенных друг в друга разноименно заряженных слоев. У нас получится сферический многослойный конденсатор, энергоемкость которого оказывается очень незначительной, в тысячу раз меньше рассчитанной Френкелем. Между тем по разрушениям взрыв шаровой молнии приравнивается к взрыву «от сотен граммов до 20 кг тринитротолуола (тола)». Это весьма солидный заряд взрывчатки. Понятно, что такие свойства молнии не могли не привлечь к ней внимания тех, кто занят разработкой нового оружия. И в декабре 1960 года в американском журнале «Радиоэлектронике» появилась сенсационная статья — «Шаровая молния против ракет».
«Шаровая молния, то есть сгустки плазмы — вещества, находящегося в сильно наэлектризованном состоянии, в котором электронные оболочки атомов сильно разрушаются, может быть использована, по мнению американских физиков, для борьбы против ракет…».
Дальше шло популярное объяснение оригинальной гипотезы выдающегося советского физика П. Л. Капицы, выдвинутой им в 1955 году. Он писал: «Если в природе не существует источников энергии, еще нам неизвестных, то на основании закона сохранения энергии приходится принять, что во время свечения шаровой молнии непрерывно подводится энергия, и мы вынуждены искать этот источник энергии вне объема шаровой молнии».
Итак, гипотез много, а загадка остается неразгаданной.
Нет на свете ничего практичнее хорошей теории
В затемненном покое крутится на токарном станке укрепленный стеклянный шар. Нога в грубом черном башмаке и белом чулке упруго нажимает на педаль. Большие ладони скользят по гладкой стеклянной поверхности. Из шара вытянут насосом воздух. И вот разреженное пространство внутри стеклянного шара начинает светиться… «Что видимое сияние в месте, лишенном воздуха, произведено быть может, в том мы искусством уверены…» — запишет позже экспериментатор в тетради. И добавит: «Возбужденная электрическая сила в шаре, из которого воздух вытянут, внезапные лучи испускает, которые в мгновение ока исчезают, и в то же время новые на их места вскакивают, так что беспрерывное блистание быть кажется В северном сиянии всполохи или лучи… вид подобный имеют…» Это писал Михаил Васильевич Ломоносов. Немало времени провел он в «електрической каморе» — в физической лаборатории, где стояли академические приборы.
Долгое время существовало предположение, что полярные сияния происходят, в самой атмосфере. Но однажды в Петербурге, «учинив сравнение с ними» высоты зари, вывел он, что «вышина верхнего края дуги около 420 верст» (примерно 450 км). А это означало, что полярные сияния происходят выше воздушного слоя.
Сегодня специалисты установили, что нижняя граница полярных сияний находится примерно в сотне километров от поверхности Земли и простирается вверх на 100-200 километров, а может подниматься и до 400, 600, а то и до 1000 километров над Землей.
В 1751 году на заседании Конференции Академии наук Михаил Васильевич говорил об электрической природе наблюдаемого явления. Интересно отметить, что Франклин пришел к той же мысли почти одновременно с Ломоносовым. А епископ Бергена Э. Понтопидан, занимавшийся в то же время вопросами натурфилософии, очень образно сравнил Землю с вращающимся стеклянным шаром электрической машины. При этом электрические заряды такой машины он уподоблял вспышкам полярных сияний. Такой вывод в то время был далеко не очевидным. И предположения шведского физика и астронома А. Цельсия о том, что полярные сияния это не что иное, как отблески снегов, лежащих на горных вершинах, казались современникам значительно более убедительными.
Ломоносов был очень приметливым человеком. Но основные его воспоминания о полярных сияниях основывались на детских и отроческих впечатлениях, пока он «жил до возраста в таких местах, где северные сияния часто случаются». И теперь, объявляя сходство их с электрическими разрядами, он считал, что «електрическая сила, рождающая северное сияние», обязана своим существованием тому же трению, только не ладоней о стекло, как в лаборатории, а воздушных потоков друг о друга. Для объяснения полярных сияний это было неверно, но какие далеко идущие аналогии можно вывести из этого предположения, рассматривая, в частности, современный механизм образования грозы.
«Нет ничего практичнее хорошей теории», — говорим мы сегодня, в конце XX столетия. Двести лет тому назад теория с практикой были связаны не столь тесно. В науке об электричестве еще не были открыты даже основополагающие законы, не существовали те основные понятия, которыми мы пользуемся теперь. Хорошая теория электричества была крайне нужна, чтобы от гипотез о механизме электрических явлений перейти наконец к прогрессивной ньютоновской программе — к нахождению механической, силы, измеряющей взаимодействие между наэлектризованными телами.
Потому и возникло предложение Петербургской Академии — «сыскать подлинную електрической силы причину и составить точную ея теорию».
В ту пору, как писал француз Лемонье в статье «Электричество», помещенной в знаменитой «Энциклопедии», издававшейся Д. Дидро, «мнения физиков относительно причины электричества расходятся: все они, впрочем, согласны в том, что существует электрическая материя, которая более или менее собирается вокруг наэлектризованных тел и которая вызывает своими движениями наблюдаемые нами электрические явления, но каждый из них по-разному объясняет причины и направления этих различных движений».
Во Франция теорию Франклина о существовании электрической жидкости, «электрической субстанции», обходили молчанием. Не одобряли ее и в России. Ломоносов и Рихман были противниками ныотонианских сил, предпочитая взгляды Декарта о существовании вихрей во всемирном эфире. По этой причине не соглашались они и с Франклшювой теорией.
К 1756 году, когда окончился срок конкурса, в Академию поступило довольно много работ. Лучшей была признана присланная из Берлина и подписанная именем Иоганна Эйлера, сына великого математика. Сам Леонард Эйлер права участвовать в конкурсе не имел, поскольку являлся членом Собрания Петербургской Академии. Однако, после того как результаты конкурса были объявлены и работа получила премию, Эйлер признался в обмане — ученые записки принадлежали ему. Свои рассуждения Эйлер строил на предположении, что сверхтонкая материя, создающая электрические силы, есть не что иное, как светоносный эфир. И все известные исследователям электрические явления относил за счет «нарушений равновесия в эфире», сгущения его или разряжения вблизи электризуемых тел. Таким образом, он обходился без введения «специальной электрической материи» Франклина.
Несмотря на то что теория Эйлера исходила из картезианских воззрений, отрицавших «электрические материи», и основывалась на явлениях в эфире, Ломоносов, по-видимому, не был удовлетворен ею полностью. В том же 1756 году он написал диссертацию «Теория электричества, разработанная математическим способом», которая осталась неопубликованной., В ней Михаил Васильевич писал: «Электрические явления — притяжение, отталкивание, свет и огонь — состоят в движении. Движение не может быть возбуждено без другого движущегося тела». Электризация, по гипотезе Ломоносова, обусловливалась вращательным движением частиц внутри вещества и в окружающем пространстве.
Обе теории были принципиально новыми, потому что сводили причину электрических явлений не к свойствам мифической жидкости, а к специфическим формам движения эфира, признанного реально существующим наукой того периода. Теории Эйлера и Ломоносова носили чисто электростатический характер. Отрицая движение электрической жидкости — электрического тока, они приводили к неправильному представлению о грозозащите и об устройстве громоотводов.
По мнению Ломоносова, надежным громоотводом могли служить изолированные «электрические стрелы», которые, должны были отводить в землю не электрический заряд, а «електрическую силу». Потому и устанавливать их он предлагал не на крышах зданий, а на пустырях, подальше от строений, «дабы ударяющая молния больше на них, нежели на головах человеческих и на храминах (т.е. на зданиях — А.Т.) силы свои изнуряла».
В принципе незаземленный громоотвод тоже способствовал разряду и отводил молнию в землю через окружающий воздух. Но при заземлении этот процесс, конечно, происходил несравненно спокойнее.
Второй надежный способ грозозащиты Михаил Васильевич видел в «потрясении воздуха», в том, чтобы «разбивать громовые тучи колокольным звоном». «Того ради кажется, — говорил он, — что не токмо колокольным звоном, но и чисто пушечной пальбою во время грозы воздух трясти не бесполезно, дабы он великим дрожанием привел в смятение електрическую силу и оную умалил».
Таким образом, более глубокие концепции электричества в принципиальном отношении у Эйлера и Ломоносова на практике приводили к неправильному конструированию громоотводов.
Идеи Франклина в России получили дальнейшее развитие в работе Эпинуса, вышедшей в 1759 году в Санкт-Петербурге. Тридцатитрехлетний профессор астрономии Берлинской Академии наук и астроном Берлинской обсерватории Франц Ульрих Теодор Эпинус всего два года назад переселился в Россию, приняв предложение войти в члены Петербургской Академии.
В первые же годы жизни в Петербурге Эпинус развивает бурную деятельность. Он пишет работу о возвращении комет, о способах «поправления морского компаса и магнитных стрелок», об «умножении силы в натуральных магнитах». И наконец — большое сочинение «Опыт математической теории электричества и магнетизма», изданное отдельной книжкой. Эта работа изобиловала математическими выражениями, все они носили формально-описательный характер и нужны были, по выражению самого автора, лишь для того, «чтобы избежать излишней пространности обычной речи». Никаких расчетов по этим «формулам» делать было нельзя. Однако профессор Эпинус высказал немало замечательных мыслей, характеризующих не только его научную эрудицию, но и подлинный дар научного предвидения. Так, он отмечает, что неизвестный никому вид закона электростатического и магнитостатического воздействия представляется ему похожим по форме на закон тяготения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
В обоих определениях не очень много общего. Это и понятно. С тех пор как люди перестали видеть в явлениях природы «гнев божий», о шаровой молнии написано много заметок, статей, книг, и все равно никто из ученых не знает, как она образуется и почему существует,
Вот характеристика этого удивительного явления, составленная по огромному количеству наблюдений;
1. Внутренняя энергоемкость — от 0, 1 до 4 кВт*ч;
2. Время существования — от нескольких секунд до 4 мин;
3. Масса — от 0, 5 до 50 г;
4. Плотность — от 0, 0013 до 0, 015 г/см3.
Какая точность!
Одним из первых ученых, вполне сознательно описавшим шаровую молнию, был Доминик Франсуа Араго. Правда, и он больше спрашивал, чем объяснял: «Как и где образуются эти скопления весомой материи, сильно пропитанные веществом молний? Какова их природа? По этому поводу в науке существует пробел, который необходимо заполнить».
Эти слова он писал в середине прошлого века в книге «Гром и молния». В 1885 году ее перевели и издали у нас в Петербурге.
Араго был уверен, что шаровая молния — это шар с гремучими газами (соединением азота с кислородом), насквозь пропитанный «веществом молнии». Такой шар, по мнению ученого, возникал в грозовых облаках, заряжался наподобие конденсатора электричеством разных знаков и падал на землю. Изолятором в таком конденсаторе мог служить сухой, уплотненный электрическими силами слой воздуха между заряженными оболочками.
В случае «пробоя» изоляции искра поджигала гремучие газы, и шар взрывался. Если же «пробоя» не происходило, электрическая энергия могла тихо «стечь» с шара, и он так же тихо исчезал.
К сожалению, в гипотезе Араго ни слова не говорилось о «молниевой материи», игравшей не последнюю роль в жизни шаровой молнии.
Потом было еще много предположений о природе этого загадочного явления. Одни авторы считали, что шаровая молния несет в себе весь запас имеющейся энергии. Другие предполагали, что источник ее находится вне шаровой молнии.
Может возникнуть вопрос: если положение дел настолько неопределенно, то как могли составить ту конкретную характеристику, которую я привел? Ведь там даны и масса, и плотность, будто шаровую молнию взвесили и пощупали, есть даже энергоемкость. Как ее определили?
В 1936 году в редакцию английской газеты «Дейли мейл» пришло письмо от читателя из графства Херфордшир. Вот что он писал:
"Сэр! Во время грозы я видел большой раскаленный шар, спустившийся с неба. Он ударил в наш дом, перерезал телефонные провода, зажег оконную раму и затем исчез в кадке с водой, стоявшей под окном.
Вода кипела затем в течение нескольких минут, но когда она достаточно остыла, чтобы можно было поискать шар, я ничего не смог обнаружить в бочке.
У. Моррис. Дорстоун, Херфорд".
Королевский астроном, которого попросили прокомментировать это письмо, сообщил: "По-видимому, то, что видел ваш корреспондент, представляет собой очень редкое явление, известное под названием… «шаровой молнии».
Сообщение вызвало интерес среди ученых, и они подсчитали примерную энергию, затраченную на кипячение воды в кадушке. Получилось от одного до 3 киловатт-часов. Это, в свою очередь, позволило оценить удельную энергоемкость шаровой молнии как минимум в 100 киловатт-часов.
Аналогичное явление наблюдал у нас в Закарпатье, близ города Перечина, С.С. Мах. «В августе 1962 года, — писал он, — около 11-12 часов вечера в корыто с водой для скота упала шаровая молния размером с теннисный мяч: она светилась цветами радуги в течение около 10 секунд. Вода из корыта полностью выкипела, на дне лежали сварившиеся лягушки. Размер корыта 0, 3x2, 5 метра. Глубина слоя воды — 15 см. В двух других корытах также были обнаружены сварившиеся лягушки».
В этом случае описываемая шаровая молния должна была иметь значительно большую удельную энергоемкость. Ведь масса выкипевшей воды — почти 100 килограммов.
Из чего же должна состоять шаровая молния, чтобы произвести такое действие? Это наверняка не «горючее вещество», потому что тогда оно должно обладать фантастической эффективностью. Напомню, что даже такое «идеальное горючее», как газ ацетилен, имеет энергоемкость во много-много раз меньшую.
Ученые выдвигали множество гипотез о природе шаровой молнии. И каждую из них время и новые факты низводили с пьедестала.
Интересны представления о шаровой молнии, развитые советским физиком Я. И. Френкелем в 1940 году.
«Яков Ильич Френкель был человеком, которого про сто оскорбляло существование непонятных физических явлений… Широко эрудированный физик, он обладал удивительной способностью сопоставлять весьма отдаленные области знания и в то же время легко, отвлекаться от досадных мелочей, часто заслоняющих основные черты явления».
Он считал шаровую молнию вихрем из смеси твердых частиц дыма и пыли с химически активными газообразными продуктами, которые образуются в результате удара обычной молнии. Такой вихрь из раскаленных частиц ярко светится. А циркуляция ионов в нем приводит к возникновению сильного магнитного поля, которое стягивает весь клубок в шар и способствует сохранению его формы.
И действительно, многочисленные наблюдатели отмечают «любовь» шаровых молний к печным трубам и дымоходам. Есть даже свидетельства появления огненных шаров зимой, во время метелей и снегопадов. Не значит ли это, что для существования шаровой молнии необходимы твердые частицы дыма и сажи, пыли и снежинок?
После взрыва-разряда шаровой молнии в воздухе остается дымок с острым запахом.
По расчетам Я.И. Френкеля, энергоемкость шаровой молнии как максимум — 0, 03 кВт-ч, то есть на три с лишним порядка меньше той, что дают подсчеты англичан.
Нет, похоже, что теория, основывающаяся на энергии горения газов, для объяснения природы шаровой молнии не годится. Тогда вернулись к гипотезе чисто электрической природы этого явления. И такое предположение рассматривалось учеными. В 1960 году появилась статья Е. Хилла. В ней он сравнивал шаровую молнию с миниатюрным грозовым облаком, электрические заряды в котором разделены ударом обычной линейной молнии. В небольшом объеме собираются сгустки электрических зарядов различных знаков. Представим себе шаровую молнию, состоящую, как матрешка, из вложенных друг в друга разноименно заряженных слоев. У нас получится сферический многослойный конденсатор, энергоемкость которого оказывается очень незначительной, в тысячу раз меньше рассчитанной Френкелем. Между тем по разрушениям взрыв шаровой молнии приравнивается к взрыву «от сотен граммов до 20 кг тринитротолуола (тола)». Это весьма солидный заряд взрывчатки. Понятно, что такие свойства молнии не могли не привлечь к ней внимания тех, кто занят разработкой нового оружия. И в декабре 1960 года в американском журнале «Радиоэлектронике» появилась сенсационная статья — «Шаровая молния против ракет».
«Шаровая молния, то есть сгустки плазмы — вещества, находящегося в сильно наэлектризованном состоянии, в котором электронные оболочки атомов сильно разрушаются, может быть использована, по мнению американских физиков, для борьбы против ракет…».
Дальше шло популярное объяснение оригинальной гипотезы выдающегося советского физика П. Л. Капицы, выдвинутой им в 1955 году. Он писал: «Если в природе не существует источников энергии, еще нам неизвестных, то на основании закона сохранения энергии приходится принять, что во время свечения шаровой молнии непрерывно подводится энергия, и мы вынуждены искать этот источник энергии вне объема шаровой молнии».
Итак, гипотез много, а загадка остается неразгаданной.
Нет на свете ничего практичнее хорошей теории
В затемненном покое крутится на токарном станке укрепленный стеклянный шар. Нога в грубом черном башмаке и белом чулке упруго нажимает на педаль. Большие ладони скользят по гладкой стеклянной поверхности. Из шара вытянут насосом воздух. И вот разреженное пространство внутри стеклянного шара начинает светиться… «Что видимое сияние в месте, лишенном воздуха, произведено быть может, в том мы искусством уверены…» — запишет позже экспериментатор в тетради. И добавит: «Возбужденная электрическая сила в шаре, из которого воздух вытянут, внезапные лучи испускает, которые в мгновение ока исчезают, и в то же время новые на их места вскакивают, так что беспрерывное блистание быть кажется В северном сиянии всполохи или лучи… вид подобный имеют…» Это писал Михаил Васильевич Ломоносов. Немало времени провел он в «електрической каморе» — в физической лаборатории, где стояли академические приборы.
Долгое время существовало предположение, что полярные сияния происходят, в самой атмосфере. Но однажды в Петербурге, «учинив сравнение с ними» высоты зари, вывел он, что «вышина верхнего края дуги около 420 верст» (примерно 450 км). А это означало, что полярные сияния происходят выше воздушного слоя.
Сегодня специалисты установили, что нижняя граница полярных сияний находится примерно в сотне километров от поверхности Земли и простирается вверх на 100-200 километров, а может подниматься и до 400, 600, а то и до 1000 километров над Землей.
В 1751 году на заседании Конференции Академии наук Михаил Васильевич говорил об электрической природе наблюдаемого явления. Интересно отметить, что Франклин пришел к той же мысли почти одновременно с Ломоносовым. А епископ Бергена Э. Понтопидан, занимавшийся в то же время вопросами натурфилософии, очень образно сравнил Землю с вращающимся стеклянным шаром электрической машины. При этом электрические заряды такой машины он уподоблял вспышкам полярных сияний. Такой вывод в то время был далеко не очевидным. И предположения шведского физика и астронома А. Цельсия о том, что полярные сияния это не что иное, как отблески снегов, лежащих на горных вершинах, казались современникам значительно более убедительными.
Ломоносов был очень приметливым человеком. Но основные его воспоминания о полярных сияниях основывались на детских и отроческих впечатлениях, пока он «жил до возраста в таких местах, где северные сияния часто случаются». И теперь, объявляя сходство их с электрическими разрядами, он считал, что «електрическая сила, рождающая северное сияние», обязана своим существованием тому же трению, только не ладоней о стекло, как в лаборатории, а воздушных потоков друг о друга. Для объяснения полярных сияний это было неверно, но какие далеко идущие аналогии можно вывести из этого предположения, рассматривая, в частности, современный механизм образования грозы.
«Нет ничего практичнее хорошей теории», — говорим мы сегодня, в конце XX столетия. Двести лет тому назад теория с практикой были связаны не столь тесно. В науке об электричестве еще не были открыты даже основополагающие законы, не существовали те основные понятия, которыми мы пользуемся теперь. Хорошая теория электричества была крайне нужна, чтобы от гипотез о механизме электрических явлений перейти наконец к прогрессивной ньютоновской программе — к нахождению механической, силы, измеряющей взаимодействие между наэлектризованными телами.
Потому и возникло предложение Петербургской Академии — «сыскать подлинную електрической силы причину и составить точную ея теорию».
В ту пору, как писал француз Лемонье в статье «Электричество», помещенной в знаменитой «Энциклопедии», издававшейся Д. Дидро, «мнения физиков относительно причины электричества расходятся: все они, впрочем, согласны в том, что существует электрическая материя, которая более или менее собирается вокруг наэлектризованных тел и которая вызывает своими движениями наблюдаемые нами электрические явления, но каждый из них по-разному объясняет причины и направления этих различных движений».
Во Франция теорию Франклина о существовании электрической жидкости, «электрической субстанции», обходили молчанием. Не одобряли ее и в России. Ломоносов и Рихман были противниками ныотонианских сил, предпочитая взгляды Декарта о существовании вихрей во всемирном эфире. По этой причине не соглашались они и с Франклшювой теорией.
К 1756 году, когда окончился срок конкурса, в Академию поступило довольно много работ. Лучшей была признана присланная из Берлина и подписанная именем Иоганна Эйлера, сына великого математика. Сам Леонард Эйлер права участвовать в конкурсе не имел, поскольку являлся членом Собрания Петербургской Академии. Однако, после того как результаты конкурса были объявлены и работа получила премию, Эйлер признался в обмане — ученые записки принадлежали ему. Свои рассуждения Эйлер строил на предположении, что сверхтонкая материя, создающая электрические силы, есть не что иное, как светоносный эфир. И все известные исследователям электрические явления относил за счет «нарушений равновесия в эфире», сгущения его или разряжения вблизи электризуемых тел. Таким образом, он обходился без введения «специальной электрической материи» Франклина.
Несмотря на то что теория Эйлера исходила из картезианских воззрений, отрицавших «электрические материи», и основывалась на явлениях в эфире, Ломоносов, по-видимому, не был удовлетворен ею полностью. В том же 1756 году он написал диссертацию «Теория электричества, разработанная математическим способом», которая осталась неопубликованной., В ней Михаил Васильевич писал: «Электрические явления — притяжение, отталкивание, свет и огонь — состоят в движении. Движение не может быть возбуждено без другого движущегося тела». Электризация, по гипотезе Ломоносова, обусловливалась вращательным движением частиц внутри вещества и в окружающем пространстве.
Обе теории были принципиально новыми, потому что сводили причину электрических явлений не к свойствам мифической жидкости, а к специфическим формам движения эфира, признанного реально существующим наукой того периода. Теории Эйлера и Ломоносова носили чисто электростатический характер. Отрицая движение электрической жидкости — электрического тока, они приводили к неправильному представлению о грозозащите и об устройстве громоотводов.
По мнению Ломоносова, надежным громоотводом могли служить изолированные «электрические стрелы», которые, должны были отводить в землю не электрический заряд, а «електрическую силу». Потому и устанавливать их он предлагал не на крышах зданий, а на пустырях, подальше от строений, «дабы ударяющая молния больше на них, нежели на головах человеческих и на храминах (т.е. на зданиях — А.Т.) силы свои изнуряла».
В принципе незаземленный громоотвод тоже способствовал разряду и отводил молнию в землю через окружающий воздух. Но при заземлении этот процесс, конечно, происходил несравненно спокойнее.
Второй надежный способ грозозащиты Михаил Васильевич видел в «потрясении воздуха», в том, чтобы «разбивать громовые тучи колокольным звоном». «Того ради кажется, — говорил он, — что не токмо колокольным звоном, но и чисто пушечной пальбою во время грозы воздух трясти не бесполезно, дабы он великим дрожанием привел в смятение електрическую силу и оную умалил».
Таким образом, более глубокие концепции электричества в принципиальном отношении у Эйлера и Ломоносова на практике приводили к неправильному конструированию громоотводов.
Идеи Франклина в России получили дальнейшее развитие в работе Эпинуса, вышедшей в 1759 году в Санкт-Петербурге. Тридцатитрехлетний профессор астрономии Берлинской Академии наук и астроном Берлинской обсерватории Франц Ульрих Теодор Эпинус всего два года назад переселился в Россию, приняв предложение войти в члены Петербургской Академии.
В первые же годы жизни в Петербурге Эпинус развивает бурную деятельность. Он пишет работу о возвращении комет, о способах «поправления морского компаса и магнитных стрелок», об «умножении силы в натуральных магнитах». И наконец — большое сочинение «Опыт математической теории электричества и магнетизма», изданное отдельной книжкой. Эта работа изобиловала математическими выражениями, все они носили формально-описательный характер и нужны были, по выражению самого автора, лишь для того, «чтобы избежать излишней пространности обычной речи». Никаких расчетов по этим «формулам» делать было нельзя. Однако профессор Эпинус высказал немало замечательных мыслей, характеризующих не только его научную эрудицию, но и подлинный дар научного предвидения. Так, он отмечает, что неизвестный никому вид закона электростатического и магнитостатического воздействия представляется ему похожим по форме на закон тяготения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31