А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Поэтому предметный мир человека есть мир феноменов, за которым скрыт (или в котором проявляет себя) мир ноуменов. В этом плане гегелевская концепция находится в русле европейской традиции с ее антитезой «внутреннего» и «внешнего», «скрытого» и «очевидного», «глубинного» и «поверхностного». Связь современной феноменологии с этой традицией есть и на самом деле, но ее никоим образом нельзя трактовать как простую преемственность. Ведь между классической европейской философией, которая в основе своей была метафизикой (т. е. создавала всеобъемлющие «картины мира», универсальные онтологические конструкции, представлявшие глубочайшую сущность мироздания), и современной философией лежит период расцвета критической философской мысли, обратившей свои стрелы именно против метафизики.
Основоположником феноменологического течения был выдающийся немецкий мыслитель Эдмунд Гуссерль (1859–1938).
В начале своего пути феноменология была, очевидно, ближе к тем направлениям, представители которых обращались к систематическому методологическому анализу. С точки зрения Гуссерля, основные принципы феноменологии были результатом коллективной деятельности многих исследователей. «Со стороны», будучи отделенными от этой эпохи несколькими десятилетиями, нам тем более ясно, что корпус базовых идей феноменологии не представляет собою оригинального учения группы философов, объединенных организационно в кружок единомышленников, и что нельзя не учитывать связи этих идей с европейской философской традицией вообще и с основными «стандартами» современной Гуссерлю философской мысли в частности. Может быть, поэтому многие историки философии склонны трактовать феноменологию прежде всего в качестве метода, во вторую очередь – как методологическую концепцию и только в третью – как философское учение.

1. «Философия арифметики» и «Логические исследования» Э. Гуссерля

Начальный импульс для своих философских размышлений Гуссерль получил от своего учителя математики Карла Вейерштрасса, с именем которого связано начало попыток свести основания математического анализа в целом к прозрачным фундаментальным арифметическим понятиям. Так сложилась программа арифметизации математики. Аналогичный процесс происходил и в геометрии, где разрешение задач наведения логического порядка ознаменовалось созданием неевклидовых геометрий. Они возникли в ходе попыток довести до совершенства систему Евклида, обосновав (доказав) постулат о параллельных линиях, исходя из аксиом, лежащих в основании этой математической конструкции. По ходу дела математические проблемы все больше «сливались» с логическими, методологическими и общефилософскими, хотя бы уже потому, что при разработке теории множеств, этого общего основания математики, обнаружились логические парадоксы.
В 1897 г. состоялся Первый международный конгресс математиков. Вопросы, которые на этом конгрессе обсуждались, отнюдь не были посвящены исключительно достижениям математической техники. Э. Пикар, один из видных математиков того времени, заявил: «И мы имеем своих математиков-философов, и под конец века, как и в прежние эпохи, мы видим, что математика вовсю флиртует с философией. Это – на благо дела, при условии, чтобы философия была весьма терпимой и не подавляла изобретательского духа».
Математические проблемы, обернувшись логическими, вызвали потребность в философском осмыслении. Через три года после Первого математического конгресса в Париже состоялся Первый международный конгресс, посвященный вопросам философии математики, на котором продолжились острые споры об основаниях математического мышления.
В такой интеллектуальной атмосфере и вызревала проблематика первого цикла работ Гуссерля. Главными из них были «Философия арифметики» (1891) и двухтомник «Логические исследования» (1900–1901). Их теоретические установки настолько разнятся, что можно говорить о двух этапах в развитии взглядов Гуссерля за это десятилетие. Тем не менее имеется и нечто весьма важное, что их друг с другом связывает. Это общее положение сформулировано философом на первых страницах «Логических исследований»: «При таком состоянии науки, когда нельзя отделить индивидуальных убеждений от общеобязательной истины, приходится постоянно снова и снова возвращаться к рассмотрению принципиальных вопросов». Такова была цель уже его первой публикации. В «Философии арифметики» он искал «последние основания», на которых, по его мнению, должно стоять все здание арифметики – если она и в самом деле является строгой наукой.
Поиск таких оснований Гуссерль ведет согласно рецептуре, предложенной Декартом, выдвинувшим методологическую программу обоснования знания посредством погружения его в испепеляющий огонь универсального сомнения. Декарт надеялся получить прочную и незыблемую опору знания в том, что выдерживает любое сомнение. Действительное основание всякого подлинного знания, по Декарту, должно быть самоочевидным.
Способ, применив который Гуссерль в «Философии арифметики» попытался достичь самоочевидных оснований научного знания, был вместе с тем отмечен печатью модного тогда теоретико-познавательного психологизма. Автор пробует свести все понятия арифметики в конечном счете к «простым восприятиям», с которых должно начинаться всякое подлинное знание.
С помощью такой редукции он надеялся не только согласовать друг с другом, но и равным образом обосновать два факта, контрастирующие друг другу: с одной стороны, устойчивость и универсальность понятийных конструкций арифметики, чисел, а с другой – многообразие и переменчивость практики счета. Базисом математического знания он объявляет «первое впечатление», которое возникает в сознании при «столкновении» – нет, не с чувственными предметами, как полагали философствующие эмпирики, а с миром чисел самих по себе! По его мнению, нельзя сказать, что человек сначала начинает считать чувственные объекты, а потом изобретает числа (и вообще математику) в качестве технического средства этих операций. Напротив, человеческое сознание в акте интеллектуального созерцания именно обнаруживает числа – пусть они и предстают чувственному созерцанию в «одеянии» чувственных объектов. Сознание сразу отличает множество из трех предметов от множества из пяти предметов: второе больше, даже в том случае, когда те предметы, которые составляют второе множество, меньше. Правда, такого рода непосредственное впечатление числа сознание получает только тогда, когда имеет дело с «простыми числами». Большие числа сознание непосредственно переживать не в состоянии: здесь оно вынуждено считать, для чего использует «суррогаты», заместители числа в сфере знания, изобретая приемы счета и системы счисления (например, десятичную), которые предстают как методы конструирования суррогатов больших чисел самих по себе. Таким образом, сознание в случае арифметики и в самом деле конструктивно; но конструирует оно не числа, а их «заместителей», представителей мира чисел в сфере знания. Иначе говоря, согласно Гуссерлю, во-первых, есть разница между «самими числами» и понятиями чисел; во-вторых, существует различие и между понятиями разных чисел: понятия малых, простых чисел – это «действительные понятия», а понятия больших чисел – только «символические».
Сознание человека, следовательно, «несовершенно», в том смысле, что непосредственно постигнуть, пережить любое число человек не может: ему приходится конструировать, чтобы быть способным считать; а счет – единственный способ постижения больших чисел человеческим разумом. Совершенное (абсолютное) сознание переживало бы, распознавало «с первого взгляда» не только группы из двух, трех и пяти объектов, но и любые множества: «Бог не считает!»
Арифметика как наука, которая занимается символическими числовыми образованиями и приемами счета, таким образом, компенсирует несовершенство («конечность») человеческого сознания. Но сама задача подобной компенсации может возникнуть только в том случае, если человек сознает собственную ограниченность, – только тогда он начинает создавать искусственные средства выхода за свои «естественные» пределы.
Но это лишь одна сторона гуссерлевской концепции познания. Другая, не менее очевидная и важная, состоит в том, что психологизм «Философии арифметики» был не совсем такой, которого придерживалось большинство его приверженцев, поскольку, согласно Гуссерлю, первоистоком знания, его основой, ощущения (или чувственный опыт) не являются. Гуссерль признавал объективное, «абсолютное бытие» чисел, которое переживается непосредственно (т. е. не посредством ощущений), а «потом» проводил различие между: а) «настоящим» числом («числом-в-себе»), б) понятием числа, которое есть переживание числа (и потому «совпадает» с собственным содержанием), и в) символическим представлением содержания понятия числа. С позиций более или менее последовательного психологизма такое построение выглядит чудовищным, поскольку теория познания, которая тогда хотела опираться на достижения новой положительной науки о духе (каковой выступала экспериментальная психология), была предназначена как раз для того, чтобы помочь избавиться от традиционной метафизики, несомненным признаком каковой выступает признание некоего существующего начала мира, будь оно идеальное или материальное.
Однако такая непоследовательность Гуссерля в отрицании метафизики как раз и оказалась обстоятельством, которое помогло ему найти собственный путь в философии. Формально можно обвинить автора «Философии арифметики» в эклектичности, в попытке «сидеть между двух стульев» в великом споре «позитивной науки» с метафизикой. Гуссерль же не усматривает в подобном философском «соглашательстве» ничего плохого. Он признает различие, которое существует между «вещами» (числами самими по себе) и «представлениями» (понятиями этих чисел в составе знания), однако, по его мнению, «вещи» и «представления» как бы «перетекают» друг в друга в едином содержании сознания. Поэтому, например, Луна и представление о Луне не могут быть строго отделены друг от друга. Постулирование такой связи открывает возможность считать редукцию средством обоснования всего содержания арифметического знания, если только она станет методом исследования, направленного «вспять», к первоначалам, а ее результатом будет строгая, без иррациональных «скачков» и незаметных разрывов, реконструкция всего познавательного процесса, итогом которого явились современные теоретические конструкции.
Даже если признать правомерность такой установки, то все же в рассуждениях Гуссерля об основаниях арифметики можно обнаружить слабое звено. Если символические числовые конструкции суть все же «заместители» чисел самих по себе, то что же тогда «замещают» отрицательные и мнимые числа? Редукция, «по Гуссерлю», должна была бы привести нас к простому, непосредственно переживаемому числу. Но ведь оно, если принять его «реалистическую позицию», никак не может быть ни отрицательным, ни тем более мнимым.
По той же причине труднейшей проблемой для Гуссерля предстает проблема нуля. Другие числа, по его мнению, несомненно существуют. Организовать связь с ними можно посредством простых чисел, создавая с помощью техники математического мышления замещающие их в сознании символические понятия. Но откуда берется «математический» нуль? Что он такое или что он «замещает»? Нуль, видимо, меньше единицы, и потому его следовало бы «переживать», созерцать с непосредственной очевидностью – так же как малое число. Но нуль – не малое число, он по смыслу своему «никакое» число! Если же нуль – искусственное численное понятие, тогда с чем оно связано цепочкой минимальных переходов? С «нулевым множеством», которое есть ничто? Но каков переживаемый признак этого множества? Скорее всего, «несуществование» – это именно то, что должно было бы отличать нуль как число, скажем, от единицы или двойки. Но ведь существование того, признаком чего является несуществование, – это же абсурд!
Однако выяснить, как именно были образованы в математике такие числа, как нуль, а также отрицательные и мнимые, видимо, можно, если обратиться к «эмпирической истории» введения в обиход математиков этих странных объектов. Изучение фактической истории математики (в принципе – если при этом не возникает непреодолимых «технических» трудностей) дает ответ на вопрос «как?»; притом не в метафорическом смысле, когда «как?» означает «почему?» (такая позитивистская транскрипция в сознании большинства ученых в начале XX в. уже произошла), а в первоначальном смысле описания реального процесса, вроде бы без всяких «объясняющих гипотез». Но можно ли это описание истории математической науки счесть тем строгим и безусловным обоснованием, к которому стремился Гуссерль? Многие его современники пропагандировали «конкретно-исторический подход к предмету» в качестве средства решения чуть ли не любых проблем познания, но Гуссерля такой поворот дела удовлетворить не мог, поскольку «фактичная», эмпирическая история есть по сути своей описание случайного по большому счету процесса, всего-навсего «имевшего место быть»; она потому и история, что имеет дело с индивидуальным, а не с всеобщим; с наличным, но отнюдь не с необходимым, которое не признает никаких исключений.
Для того чтобы понять дальнейшее движение мысли Гуссерля, отказавшегося от «психологистского» варианта редукционизма, но не от редукционизма вообще, обратим внимание на то, что исторический подход предстает как частный случай более общего – генетического. При высокой степени обобщения процесса возникновения можно вообще не обращать никакого внимания на эмпирический материал и исследовать развитие объекта «в чистом виде» (примерно так же, как теоретическая механика изучает поведение системы из материальных точек, связанных силами тяготения, в своем, «теоретическом», времени). Правда, у философов, не говоря уж об ученых-профессионалах (чуть ли не единственное исключение составляли математики, хотя и среди них здесь не было единогласия), такая позиция была дискредитирована сходством с гегелевской метафизикой. Ведь Гегель считал не только возможным, но и единственно правильным подходом просто игнорировать факты, если они противоречат требованиям его философских построений. Однако, с другой стороны, и привлекательность «чистой» приверженности фактам, которую пропагандировал позитивизм в начале века, уже стала сомнительной в глазах ученых: теперь они признавали важность теоретического мышления для развития собственной науки.
Гуссерль тоже использовал генетический (не исторический!) подход к предмету, исследуя конструктивную работу мысли в самом общем виде. Даже тот весьма абстрактный материал, на котором этот процесс им изучается вначале, – теоретическая арифметика, как оказывается в дальнейшем, для него вовсе не обязателен. От этого фактического «наполнения» тоже позволительно отвлечься. Ведь и сама арифметика в качестве науки безразлична в отношении конкретных числовых примеров, описывающих те случаи решения конкретных задач, когда «практическому» человеку приходится что-либо считать!
Но что произойдет, если в определении науки вообще перенести центр тяжести с объекта результата познания на метод познания, – что, как известно, уже делали неокантианцы, со многими из которых Гуссерль был лично знаком? Такая смена акцента заметна уже в предложенном Гуссерлем определении науки как «систематического познания» объекта. Отсюда только шаг до того, чтобы вообще рассматривать сущность математики не «содержательно», не в ее результатах, не в том, что она так или иначе открывает нашему взору идеальный «мир чисел», а в конструктивной деятельности математического разума. Этот шаг и был сделан в «Логических исследованиях», ознаменовавших другой подход к решению проблемы оснований знания. Связь этой работы с предыдущей, однако, вовсе не была только отвержением прежних представлений: не стоит забывать, что «другой стороной» метода редукции уже был продуктивный процесс – конструирования (конституирования) математических понятий.
В «Логических исследованиях» Гуссерль отказывается от теоретико-познавательного психологизма и наивного идеализма и продолжает поиски очевидных оснований в ином направлении. Если в «Философии арифметики» он стремился показать, что искусственные (т. е. субъективные) образования сохраняют связь с объективной первоосновой знания – «числами самими по себе», то теперь вектор его научных интересов направлен в противоположную сторону:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121