А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

— Если вы блестяще справляетесь с математикой, преуспеете и в химии. У нас большая потребность в химиках.
Железная логика Лобачевского поколебала сомнения Зинина. Николай Николаевич восхищался великим математиком. Зинин согласился и поехал учиться за границу.
Когда весной 1837 года Зинин приехал в Берлин, он уже свободно владел тремя европейскими языками. Здесь он слушал специальный курс физиологической химии, читаемый профессором Мюллером, посещал лекции по математике и лекции по медицине.
Затем Николай перебрался в Гессен к известному химику Либиху. В лаборатории Либиха царила атмосфера творчества и неустанного поиска. Все работали самоотверженно и увлечённо. Новое открытие радовало всех. Каждое утро Либих выслушивал отчёты сотрудников о работе за прошедший день, давал оценку результатам, но путь решения проблем стажёры должны были искать самостоятельно.
Работа с бензойной кислотой увлекла Зинина. Хотя научные исследования занимали его целиком, Зинин выкраивал время на посещение лекций Либиха по экспериментальной химии, а также занятий по аналитической химии. Через несколько месяцев Зинин познал радость первого успеха.
Изучая влияние различных реагентов на масло горького миндаля (бензальдегида), он открыл лёгкий и простой способ превращения этого вещества в бензоин. Описание этого исследования и явилось первой научной публикацией Зинина, которая была напечатана в издаваемых Либихом «Анналах» в 1839 году. В следующем году он опубликовал статью «О продуктах, полученных разложением масла горьких миндалей». Химия увлекала учёного всё больше и больше.
В сентябре 1840 года Зинин вернулся в Россию, а 30 января 1841 года в Петербурге Зинин защитил докторскую диссертацию и получил степень доктора естественных наук.
После защиты молодой учёный вернулся в Казань. В работе, в общении с друзьями текли дни, но, оставаясь наедине с собой, он остро ощущал одиночество. Квартирная хозяйка окружала его заботами, и часто по вечерам Зинин заходил в её комнату выпить чаю и поговорить. Постепенно привязанность росла, и мысль о женитьбе стала сама собой разумеющейся. С женитьбой жизнь Зинина упорядочилась, и заботы о быте уже не отвлекали его. Теперь всё своё время и силы учёный отдавал науке.
По утрам он работал в библиотеке, читал лекции, заканчивал неотложные дела. После обеда вёл занятия со студентами в лаборатории. В это время и производили «сжигания» — так называли анализ органических веществ, разработанный Либихом. В дни, отведённые для «сжиганий», слуга Фёдор с раннего утра закладывал в печи древесный уголь. Зинин появлялся в лаборатории около двух часов, студенты и помощники уже ждали его.
В то время его занимала одна проблема: какое вещество получается при обработке нитробензола сероводородом. Идея этих исследований родилась ещё в Гессене. Масло горького миндаля, нитробензол и ряд других производных бензола, как и сам бензол, — сильно реакционноспособные вещества. Зинин задался целью изучить возможности их взаимодействия с другими веществами. Подвергая их обработке сероводородом или раствором сульфида натрия, Зинин предполагал получить продукт, содержащий серу. Однако, к его удивлению, бесцветная жидкость, образовавшаяся после взаимодействия нитробензола с сероводородом, не содержала даже следов серы.
Зинин подошёл к шкафу, открыл склянку с жёлтой маслянистой жидкостью и осторожно понюхал. Странно… Запах напоминал ему жидкость, которую он уже видел в лаборатории Фрицше. Неужели это анилин? Но анилин, полученный Фрицше, был окрашен в тёмно-коричневый цвет…
Зинин поставил склянку в шкаф и отправился домой, но мысль о полученном веществе не покидала его. В статье, опубликованной в 1842 году в «Бюллетене Академии наук» в Петербурге, он изложил метод получения нового вещества, названного им «бензидам». Зинин послал Фрицше ампулу с полученной жидкостью для сравнения с веществом, которое выделил Фрицше. Через несколько недель пришёл ответ. Оба вещества идентичны. Зинин сделал большое открытие. До сих пор анилин получали как продукт разложения разнообразных природных веществ. Отныне доказано, что анилин можно получать простым способом — восстановлением нитробензола сероводородом.
Открытие Зинина вызвало большой интерес у учёных Европы, статью с изложением метода получения «бензидама» опубликовали многие европейские химические журналы. Ранее анилин не имел практического применения, но реакция, открытая Зининым, давала возможность широко использовать это вещество. Метод получения ароматических аминов восстановлением нитросоединений сероводородом сейчас называется «реакцией Зинина». Спустя несколько лет оба вещества, анилин и нафталидам (так Зинин назвал нафтиламин), описанные в этой статье, стали основой промышленного производства анилиновых красителей.
Зинин продолжал изучать возможности открытой им реакции, применив её к моно- и динитропроизводным бензола, к нитрокислотам. Во всех случаях исходное нитросоединение превращалось в аминопроизводное. Позже Зинин пытался распространить реакцию и на некоторые нитрированные ациклические углеводороды. В 1845 году Зинин синтезировал азоксибензол, затем гидразобензол, который в кислой среде превращается в бензидин.
За все годы, проведённые в Казани, Зинина не покидала мысль о переезде в Петербург. Он считал дни до истечения указанного в обязательстве срока его работы в Казанском университете. После неожиданного несчастья, постигшего Зинина, решение созрело окончательно. С некоторых пор жена его начала худеть, бледнеть и задыхаться в приступах сухого кашля. Диагноз не оставлял сомнений — чахотка. У тихой и слабой женщины не было воли бороться со страшным недугом, она сразу признала себя обречённой и угасла в течение нескольких недель.
Петербургские друзья пришли на помощь Николаю Николаевичу. Известный хирург П. А. Дубовицкий сообщил Зинину, что кафедра химии в Медико-хирургической академии в Петербурге вакантна. Подготовив необходимые документы, Зинин отправился в столицу. В конце января 1848 года он был назначен ординарным профессором химии.
Приступив к работе, Зинин сразу внёс большие изменения в учебные программы Медико-хирургической академии. По мнению учёного, физиологические процессы в организме — это процессы химические и физические и потому настоящий врач должен хорошо знать химию и физику. Этим предметам уделялось теперь столь значительное место в программе, что петербургские остряки стали называть Медико-хирургическую академию медико-химической.
Однажды в ложе петербургского оперного театра Зинин оказался рядом с молодой красивой дамой. Фрицше представил даме Николая Николаевича. Зинин учтиво поклонился, но улыбка соседки его несколько смутила. Встреча эта не прошла бесследно. Не решаясь признаться самому себе, что эта женщина произвела на него впечатление, Зинин постоянно возвращался мыслями к Елизавете Александровне… Через несколько месяцев она стала его женой.
С женитьбой жизнь в Петербурге стала для Зинина ещё более интересной и наполненной. Он продолжал исследования нитропроизводных. В этой работе ему помогал В. Ф. Петрушевский, преподававший химию в военных училищах Петербурга. В 1853–1854 годах они разработали способ пропитки чёрного пороха нитроглицерином. Позднее Петрушевский открыл динамит с углекислой магнезией, названный «русским динамитом Петрушевского».
Как член-корреспондент Академии наук (Зинин был избран 2 мая 1858 года) он употребил всё своё влияние на то, чтобы добиться выделения средств на строительство помещения и лаборатории для химического отделения в академии. Средства, в конце концов, были отпущены, и строительство пошло быстрыми темпами.
После тридцатилетия государственной службы Зинин по закону должен был выйти на пенсию. Вместо него с 1862 года начал читать лекции по органической химии Бородин, а Николай Николаевич ещё в течение двух лет продолжал выполнять обязанности секретаря Учёного совета. Затем Учёный совет освободил его от этой обязанности, но, для того чтобы Зинин мог остаться в академии, утвердил специальную должность директора химических работ. Спустя год Зинина избрали действительным членом Академии наук.
Большой вклад Зинина в развитие органической химии получил заслуженную оценку. Он был избран членом жюри международной выставки в Париже, куда ездил вместе с Фрицше и Якоби. Научная общественность Парижа тепло встретила русского учёного. Учёные многих стран искали с ним встречи, приходили познакомиться, пожать ему руку, поздравить. Знаменитая реакция, впервые осуществлённая Зининым, через два десятилетия дала невиданный толчок развитию анилинокрасочной промышленности.
В 1868 году по инициативе Николая Николаевича в Петербурге было основано Русское химическое общество, и Зинин был избран его председателем.
Зинин всячески стремился поддерживать и выдвигать способных учеников. Среди них были А. П. Бородин, Н. Н. Бекетов, А. Н. Энгельгардт, Л. Н. Шишков. Ещё работая в Казани, он заметил исключительные способности молодого учёного Александра Бутлерова и в дальнейшем сделал всё, чтобы его ученик был переведён в Петербург и получил место профессора. После смерти академика Фрицше, опять-таки по настоянию Зинина, на его место был назначен Бутлеров. По уставу академии Александр Михайлович даже занял квартиру Фрицше. Тесная дружеская связь между учителем и учеником помогала в работе обоим. Часто Зинин заходил в лабораторию Бутлерова посоветоваться, обменяться мнением.
Несмотря на преклонный возраст, Зинин продолжал работать с юношеским энтузиазмом. Теперь предметом его исследований были бензоин, бензамарон и амаровая кислота. Он подробно изучил свойства этих веществ, их производных, способы получения и реакции их превращения в другие вещества. Отдыхал Зинин необычно — он с наслаждением читал математические работы. Любовь к математике осталась на всю жизнь.
Как-то весной 1879 года, находясь в лаборатории Бутлерова, учёный почувствовал страшную боль в пояснице. Перехватило дыхание, закружилась голова, и Николай Николаевич рухнул на ступеньки.
Блуждающая почка, которая мучила его ещё со времени школьной травмы, теперь стала причинять невыразимые страдания. Лечил его Сергей Петрович Боткин и ассистент Боткина Александр Александрович Загумени, муж старшей дочери Зинина. Они рекомендовали полный покой, поскольку сильные боли могли оказаться роковыми.
Печальные прогнозы оправдались: во время одного из таких приступов сердце не выдержало… Это случилось 6 (18) февраля 1880 года.
ГЕРМАН ГЕЛЬМГОЛЬЦ

(1821–1894)
Герман Гельмгольц — один из величайших учёных XIX века. Физика, физиология, анатомия, психология, математика… В каждой из этих наук он сделал блестящие открытия, которые принесли ему мировую славу.
Герман Людвиг Фердинанд Гельмгольц родился 31 августа 1821 года в семье потсдамского учителя гимназии. По желанию отца, в 1838 году Герман поступил в военно-медицинский институт Фридриха Вильгельма для изучения медицины. Под влиянием знаменитого физиолога Иоганна Мюллера, Гельмгольц посвятил себя изучению физиологии и по прослушании курса института защитил в 1842 году докторскую диссертацию, посвящённую строению нервной системы. В этой работе двадцатидвухлетний врач впервые доказал существование целостных структурных элементов нервной ткани, получивших позднее название нейронов.
В том же году Герман назначается ординатором в больницу в Берлине. С 1843 года начался служебный путь Гельмгольца в качестве потсдамского военного врача. Жил он в казарме и вставал в пять часов утра по сигналу кавалерийской трубы. Но эскадронный хирург гусарского полка находил время и для занятий наукой. В 1845 году он прощается с военной службой и едет в Берлин для подготовки к государственным экзаменам на звание врача. Гельмгольц усердно занимается в домашней физической лаборатории Густава Магнуса.
А. Г. Столетов, чутко уловивший перелом в научном развитии Германии в сороковых годах, писал: «Домашняя лаборатория Магнуса — первый пример физической лаборатории — становится рассадником физиков-экспериментаторов». Впоследствии воспитанник этой лаборатории Гельмгольц становится преемником Магнуса и переносит лабораторию в здание Берлинского университета, где она превращается в мировой научный центр.
Другим учителем Гельмгольца в Берлине был Иоганн Мюллер. Много позднее 2 ноября 1871, на чествовании Гельмгольца по случаю его семидесятилетия он произнёс речь, в которой охарактеризовал свой научный путь. Он указал, что под влиянием Иоганна Мюллера заинтересовался вопросом о загадочном существе жизненной силы. Размышляя над этой проблемой, Гельмгольц в последний год студенчества пришёл к выводу, что теория жизненной силы «приписывает всякому живому телу свойства так называемого perpetuum mobile». Гельмгольц был знаком с проблемой вечного двигателя со школьных лет, а в студенческие годы «в свободные минуты… разыскивал и просматривал сочинения Даниила Бернулли, Даламбера и других математиков прошлого столетия». «Таким образом, я, — говорил Гельмгольц, — натолкнулся на вопрос: „Какое отношение должно существовать между различными силами природы, если принять, что perpetuum mobile вообще невозможен?“ — и далее: „Выполняются ли в действительности все эти отношения?“»
В журнале Мюллера Гельмгольц опубликовал в 1845 году работу «О расходовании вещества при действии мышц». В том же 1845 году молодые учёные, группировавшиеся вокруг Магнуса и Мюллера, образовали Берлинское физическое общество. В него вошёл и Гельмгольц. С 1845 года общество, превратившееся в дальнейшем в Немецкое физическое общество, стало издавать первый реферативный журнал «Успехи физики».
Научное развитие Гельмгольца происходило, таким образом, в благоприятной обстановке возросшего интереса к естествознанию в Берлине. Уже в первом томе «Успехов физики, 1845», вышедшем в Берлине в 1847 году, был напечатан обзор, выполненный Гельмгольцем по теории физиологических тепловых явлений. 23 июля 1847 года он сделал на заседании Берлинского физического общества доклад «О сохранении силы». В том же году он был опубликован отдельной брошюрой.
Авторитеты в то время «были склонны отвергать справедливость закона; среди той ревностной борьбы, какую они вели с натурфилософией Гегеля, и моя работа была сочтена за фантастическое умствование…». Однако Гельмгольц не был одинок, его поддержала научная молодёжь, и, прежде всего, будущий знаменитый физиолог Дюбуа Реймон и молодое Берлинское физическое общество.
Что же касается отношения его к работам предшественников Майера и Джоуля, то Гельмгольц неоднократно признавал приоритет Майера и Джоуля, подчёркивая, однако, что с работой Майера он не был знаком, а работы Джоуля знал недостаточно.
В отличие от своих предшественников он связывает закон с принципом невозможности вечного двигателя. Материю Гельмгольц рассматривает как пассивную и неподвижную. Для того чтобы описать изменения, происходящие в мире, её надо наделить силами как притягательными, так и отталкивательными. «Явления природы, — говорит Гельмгольц, — должны быть сведены к движениям материи с неизменными движущими силами, которые зависят только от пространственных взаимоотношений».
Таким образом, мир, по Гельмгольцу, — это совокупность материальных точек, взаимодействующих друг с другом с центральными силами. Силы эти консервативны, и Гельмгольц во главу своего исследования ставит принцип сохранения живой силы. Принцип Майера «из ничего ничего не бывает» Гельмгольц заменяет более конкретным положением, что «невозможно при существовании любой произвольной комбинации тел получать непрерывно из ничего движущую силу».
Принцип сохранения живой силы в его формулировке гласит: «Если любое число подвижных материальных точек движется только под влиянием таких сил, которые зависят от взаимодействия точек друг на друга или которые направлены к неподвижным центрам, то сумма живых сил всех взятых вместе точек останется одна и та же во все моменты времени, в которые все точки получают те же самые относительные положения друг по отношению к другу и по отношению к существующим неподвижным центрам, каковы бы ни были их траектории и скорости в промежутках между соответствующими моментами».
Сформулировав этот принцип, Гельмгольц рассматривает его применения в различных частных случаях. Рассматривая электрические явления, Гельмгольц находит выражение энергии точечных зарядов и показывает физическое значение функции, названной Гауссом потенциалом. Далее он вычисляет энергию системы заряженных проводников и показывает, что при разряде лейденских банок выделяется теплота, эквивалентная запасённой электрической энергии.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82