А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Так, например, по Аристотелю, насекомые и лягушки при определенных условиях могут заводиться в иле, сырой почве; черви и водоросли в стоячей воде, а вот личинки мух – в протухшем мясе при его гниении.
Однако уже с начала XVII в. такое понимание происхождения жизни стало подвергаться сомнению. Ощутимый удар по этой гипотезе нанес итальянский естествоиспытатель и врач Ф. Реди (1626–1698), который в 1688 г. раскрыл сущность появления жизни в гниющем мясе. Ф. Реди сформулировал свой принцип: «Все живое – от живого» и стал основоположником концепции биогенеза, утверждавшей, что жизнь может возникнуть только из предшествующей жизни.
Французский микробиолог Л. Пастер (1822–1895) своими опытами с вирусами окончательно доказал несостоятельность идеи спонтанного самозарождения жизни. Однако, опровергнув эту гипотезу, он не предложил свою, не пролил свет на вопрос о возникновении жизни.
Тем не менее опыты Л. Пастера имели большое значение в получении богатого эмпирического материала в области микробиологии его времени.
Гипотеза панспермии – о неземном происхождении жизни путем занесения «зародышей жизни» из космоса на Землю – впервые была высказана немецким биологом и врачом Г. Рихтером в конце XIX в. Концепция панспермии (от греч. pan – весь, sperma – семя) допускает возможность происхождения жизни в разное время в разных частях Вселенной и переноса ее различными путями на Землю (метеориты, астероиды, космическая пыль).
Действительно, в настоящее время получены некоторые данные, указывающие на возможность образования органических веществ химическим путем в условиях космоса. Так, в 1975 г. предшественники аминокислот были найдены в лунном грунте. В межзвездных облаках обнаружены простейшие соединения углерода, в том числе и близкие к аминокислотам. В составе метеоритов найдены альдегиды, вода, спирты, синильная кислота и т. д.
Концепцию панспермии разделяли крупнейшие ученые конца XIX – начала XX в.: немецкий химик и агроном Ю. Либих, английский физик У. Томсон, немецкий естествоиспытатель Г. Гельмгольц, шведский физико-химик С. Аррениус. С. Аррениус в 1907 г. в своих трудах даже описывал, как с других планет в космическое пространство уходят с пылинками и живые споры организмов. Носясь в бескрайних просторах космоса под действием давления звездного света, они попадали на планеты и там, где были благоприятные условия (в том числе на Земле) начинали новую жизнь. Идеи панспермии поддерживали и некоторые русские ученые: геофизик П. Лазарев, биолог Л. Берг, биолог-почвовед С. Костычев.
Существует идея о возникновении жизни на Земле почти с момента ее образования. Как известно, Земля образовалась около 5 млрд лет назад. Значит, жизнь могла зародиться во время образования Солнечной системы, то есть в космосе. Поскольку длительность эволюции Земли и жизни на ней разнится незначительно, то существует версия, что жизнь на Земле – это продолжение вечного ее существования. Эта позиция близка к теории вечного существования жизни во Вселенной. В масштабе глобального эволюционного процесса можно полагать, что возникновение жизни на Земле может, по-видимому, совпадать с образованием и существованием материи. Академик В. Вернадский разделял идею вечности жизни не в контексте ее перераспределения в космосе, а в смысле неразрывности и взаимосвязанности материи и жизни. Он писал, что «жизнь и материя неразрывны, взаимосвязаны и между ними нет временной последовательности». На эту же мысль указывает и русский биолог и генетик Тимофеев-Ресовский (19001982). В своем кратком очерке теории эволюции (1977 г.) он остроумно заметил: «Мы все такие материалисты, что нас всех безумно волнует, как возникла жизнь. При этом нас почти не волнует, как возникла материя. Тут все просто. Материя вечна, она ведь всегда была, и ненужно никаких вопросов. Всегда была. А вот жизнь, видите ли, обязательно должна возникнуть. А может быть, она тоже была всегда. И не надо вопросов, просто всегда была, и все».
Для обоснования панспермии в научно-популярной литературе приводятся «факты» о неопознанных летающих объектах, прилете инопланетян на Землю, наскальные топологические рисунки.
Однако серьезных доказательств эта концепция не имеет, а многие доводы выступают против нее. Известно, что диапазон жизненных условий для существования живого довольно узок. Поэтому вряд ли живые организмы выжили бы в космосе под действием ультрафиолетовых лучей, рентгеновского и космического излучения. Но и не исключается возможность занесения отдельных предпосылочных факторов жизни на нашу планету из космоса. Следует отметить, что это принципиального значения не имеет, поскольку концепция панспермии в корне не решает проблемы происхождения жизни, а лишь переносит ее за пределы Земли, не раскрывая самого механизма ее образования.
Таким образом, ни одна из перечисленных четырех гипотез до настоящего времени не подтверждена надежными экспериментальными исследованиями.
Наиболее доказательно с точки зрения современной науки выглядит пятая гипотеза – гипотеза происхождения жизни в историческом прошлом в результате биохимической эволюции. Ее авторами являются отечественный биохимик академик А. Опарин (1923 г.) и английский физиолог С. Холдейн (1929 г.). Об этой гипотезе мы подробно будем говорить в следующем разделе.
Гипотеза происхождения жизни в историческом прошлом в результате биохимической эволюции А. И. Опарина
С точки зрения гипотезы А. Опарина, а также с позиций современной науки возникновение жизни из неживого вещества произошло в результате естественных процессов во Вселенной при длительной эволюции материи. Жизнь есть свойство материи, которое появилось на Земле в определенный момент ее истории. Это результат процессов, протекающих сначала многие миллиарды лет в масштабе Вселенной, а потом сотни миллионов лет на Земле.
А. Опарин выделил несколько этапов биохимической эволюции, конечной целью которых явилась примитивная живая клетка. Эволюция шла по схеме:
1. Геохимическая эволюция планеты Земля, синтез простейших соединений, таких как СО2,1 ч[Н3,Н20 и т. д., переход воды из парообразного состояния в жидкое в результате постепенного охлаждения Земли. Эволюция атмосферы и гидросферы.
2. Образование из неорганических соединений органических веществ – аминокислот – и их накопление в первичном океане в результате электромагнитного воздействия Солнца, космического излучения и электрических разрядов.
3. Постепенное усложнение органических соединений и образование белковых структур.
4. Выделение белковых структур из среды, образование водных комплексов и создание вокруг белков водной оболочки.
5. Слияние таких комплексов и образование коацерватов (от лат. coacervus – сгусток, куча, накопление), способных обмениваться веществом и энергией с окружающей средой.
6. Поглощение коацерватами металлов, что привело к образованию ферментов, ускоряющих биохимические процессы.
7. Образование гидрофобных липидных границ между коацерватами и внешней средой, что привело к образованию полупроницаемых мембран, что обеспечивало стабильность функционирования коацервата.
8. Выработка в ходе эволюции у этих образований процессов саморегуляции и самовоспроизведения.
Так, по гипотезе А. Опарина, появилась примитивная форма живого вещества. Такова, по его мнению, предбиологическая эволюция вещества.
Академик В. Вернадский возникновение жизни связывал с мощным скачком, прервавшим безжизненную эволюцию земной коры. Этот скачок (бифуркация) внес в эволюцию столько противоречий, что они создали условия для зарождения жизни.
8.8. Физико-химические предпосылки для зарождения жизни на Земле
Как известно, возраст Земли составляет примерно 5 млрд лет. Жизнь на Земле существует порядка 3,5–3,7 млрд лет. Так, признаки деятельности первых живых организмов обнаружены в докембрийских породах. Как видно, жизнь по «возрасту своему» является почти ровесницей Земли. Отсюда следует, что само происхождение жизни на Земле тесно связано с протеканием определенных химических процессов и реакций на поверхности нашей планеты.
Начальный этап этого процесса (появления жизни) связан с геологической эволюцией Земли. На первых этапах своей истории наша планета была очень горячей (4–8 тыс. °С). По мере остывания вследствие вращения атомы тяжелых элементов смещались к центру. На поверхностных слоях концентрировались атомы легких элементов, таких как углерод, азот, водород, кислород. При дальнейшем охлаждении Земли появились химические соединения: метан, вода, двуокись углерода, аммиак, молекулярный водород, азот. В этой атмосфере присутствовали лишь следы свободного кислорода. Она была богата инертными газами: неоном, аргоном, гелием.
Физические и химические свойства воды (высокая теплоемкость, вязкость, полярность, агдезия, когезия, хороший растворитель и т. д.) и углерода (способность образовывать линейные соединения, трудность образования оксидов, способность к восстановлению, ковалентная связь) определили роль воды и углерода в зарождении жизни.
Образование простых органических соединений
Первичная атмосфера Земли на начальных этапах эволюции планеты носила восстановительный характер, поскольку практически не содержала свободного кислорода. Понижение температуры способствовало переходу некоторых газообразных соединений в жидкое и твердое состояния. При падении температуры поверхности Земли ниже 100 °C произошла конденсация водяных паров с сильнейшими ливнями и грозами. Это привело к образованию первичных водоемов. Активная вулканическая деятельность Земли выносила в водную среду наряду с другими соединениями множество соединений металлов с углеродом, карбидов. В результате соединения карбидов с водой образовывались углеводородные соединения. Теплая дождевая вода имела в своем составе углеводородные соединения, газы (СО2,NН3 и др.), соли, которые вступали в химические реакции. Образовывались и углеродисто-азотистые группы – N = С = N-. Постепенно в водной среде на поверхности нашей молодой планеты стали накапливаться простейшие органические соединения.
Образование сложных органических соединений
Следующий этап биогенеза характеризовался образованием уже более сложных органических соединений, созданием белковых веществ. Повышенная температура в водах океана, мощное ультрафиолетовое излучение Солнца (тогда озоновый слой отсутствовал), грозовые электрические разряды создавали мощный энергетический фон, благодаря которому простые молекулы органических веществ при взаимодействии с другими химическими соединениями и между собой постепенно усложнялись. Это усложнение привело к образованию различных полимеров: полисахаридов, аминокислот, жирных кислот, нуклеиновых кислот. Это предположение экспериментально было подтверждено американским ученым биологом С. Миллером в 1953 г. на специально сконструированной установке. При этом были получены сахара и целый ряд аминокислот. Позже в аналогичных экспериментах в условиях лаборатории была доказана возможность получения сложных биохимических соединений, в том числе и белковых молекул, а также азотистых оснований нуклеотидов. Данные опыты показали возможность образования молекул белка в искусственных условиях.
Образовавшиеся сложные органические вещества скапливались в водах первичного океана, особенно в его прибрежных, хорошо прогреваемых частях, образуя первичный «бульон». Его насыщению способствовала и деятельность подземных вулканов. В таком «бульоне» предположительно мог развиваться процесс образования сложных органических макромолекул.
Химический состав живой природы
Состав живых организмов насчитывает всего 16 химических элементов, в то время как неживая природа – более 110 элементов. Из 16 элементов живой природы четыре элемента – углерод, водород, кислород и азот – составляют 99 % массы живого вещества. Связано это с особенностями физических и химических свойств этих элементов – валентностью, способностью образовывать прочные ковалентные связи между атомами. В живом организме главным элементом является углерод. В основе живого лежат углеродные соединения, где атомы углерода связываются между собой прочной ковалентной связью. Это обеспечивает стабильность и прочность как химического соединения, так и живого организма в целом. Атомы углерода способны образовывать длинные разветвленные цепочки как друг с другом, так и с атомами кислорода, водорода, азота. По существу, все живое – это «углеродные» тела. Раньше полагали, что молекулы углерода присущи только живому. Поэтому соединения углерода получили названия органических. В природе соединений углерода существует гораздо больше, чем соединений других элементов таблицы Менделеева, причем большая их часть не связана с живыми организмами.
В состав живого входят также такие макроэлементы, как фосфор, сера, калий, кальций, магний, железо, натрий. Они образуют группу так называемых биофильных элементов, или органогенов. Важное функциональное значение для организмов имеют и микроэлементы: кобальт, бор, цинк, молибден, йод, медь. Они составляют сотые и тысячные доли процента от массы организмов.
Мономеры и макромолекулы
Все живое состоит из различных малых органических молекул – мономеров. Объединяясь, мономеры образуют макромолекулы (их еще называют биологическими молекулами), представляющие собой полимерные цепочки. Мономеры складываются в определенную, конкретную молекулярную конструкцию, образуя при этом необходимый конкретный белок. Это значит, что процессы химической самоорганизации макромолекул играли ключевую роль в предбиологической эволюции.
Современная эволюционная химия как наука о самоорганизации и эволюции химических систем предпочтение в проблеме самоорганизации макромолекулярных структур в предбиологический период отдает катализу. Появление автокаталитических, а также повышение уровня информационных связей резко увеличило интенсивность упорядочения перехода материи от простых ко все более сложным, информационно насыщенным органическим соединениям. По мнению А. Руденко, эволюционирующими элементами в развитии предбиологических химических систем являются именно те структуры и соединения, которые резко усиливали действия катализаторов. В этом смысле биокатализ с участием ферментов тесно связан с проблемами биогенеза и происхождения жизни.
По мнению М. Эйгена, образование макромолекул и их эволюция связаны с неравновесным состоянием открытых живых систем. Обмен веществом и информацией с окружающей средой (метаболизм) можно рассматривать как совокупность химических реакций в живой системе (клетке). При этом молекулы-мономеры, переходя из окружающей среды в живую систему (организм), привносят в него определенную информацию. Последняя перерабатывается организмом и закрепляется в нем при процессах полимеризации и деструкции. Полимеризация идет путем самоинструктируемой репродукции образованных макромолекул. Если в живой системе скорость репродукции (воспроизведения) выше, чем скорость деструкции биополимеров, то макромолекулы растут; если нет, то они распадаются. Поступают в систему только те мономеры, которые преодолевают конкуренцию, поэтому они имеют определенную селекционную ценность для макромолекул. Таким образом, идет естественный отбор, то есть предшественниками живых систем, по-видимому, были лишь те макромолекулы, которые обладали определенными необходимыми свойствами. Следовательно, дарвинский естественный отбор уже проявил себя и на добиологической стадии развития материи.
В живых организмах важную роль играют три класса молекул – мономеров: аминокислоты, нуклеотиды, моносахариды. Они служат строительным материалом для полимерных биологических макромолекул, таких как белки, нуклеиновые кислоты и полисахариды. Размеры мономеров колеблются в диапазоне 0,5–1,0 нм, а макромолекул – 5-300 нм. Диаметр молекулы аминокислоты порядка 0,5 нм, хромосомы – примерно 1 нм, а атомов углерода и водорода – около 0,4 нм. Для сравнения средний диаметр соматической клетки 10–20 мкм, растительной – 30–50 мкм. Таким образом, атомы примерно в 100 000 раз меньше клетки.
Все живые организмы, их клетки, органеллы как субструктуры клеток, выполняющие специфические функции, являются в целом совокупностями макромолекул. Живые организмы содержат четыре основных класса биополимеров: белки, нуклеиновые кислоты, углеводы и липиды. Они являются структурной основой всех живых организмов и играют важнейшую роль в процессах жизнедеятельности.
Белки – это высокомолекулярные органические соединения, макромолекулы которых построены из остатков 20 аминокислот (мономеров).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40