А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 


– Да. Никаких особенных условий.
– Как такое возможно?
Он пожал плечами.
– Ассемблерам это не нужно.
– Ассемблерам? – переспросил я. – Ты хочешь сказать, что у вас в этом конвейере – молекулярные ассемблеры?
– Да. Конечно.
– И эти ассемблеры выполняют для вас весь процесс сборки?
– Конечно. Я думал, ты это понял.
– Нет, Рики, – сказал я. – Я совсем этого не понимаю. И мне не нравится, когда меня обманывают.
Рики как будто обиделся.
– Я тебя не обманываю.
Но я был уверен, что он лжет.
Одно из первых, что ученые узнали о молекулярном производстве, было то, насколько феноменально труден сам производственный процесс. В тысяча девятьсот девяностом году исследователи, работавшие на компанию IBM, перемещали атомы ксенона по никелевой пластинке до тех пор, пока не сформировали из них буквы «IBM» в виде логотипа компании. Весь логотип получился размером в одну десятимиллионную дюйма, и рассмотреть его можно было только через электронный микроскоп. Но наглядная демонстрация вышла потрясающей, и на эту тему было очень много публикаций. IBM постаралась создать впечатление, что это – материальное доказательство новой концепции, открытие двери к молекулярному производству. Однако это был всего лишь рекламный трюк, и ничего более.
Потому что перемещение отдельных атомов так, чтобы они расположились в определенном порядке, – медленная, кропотливая и чрезвычайно дорогостоящая работа. У исследователей IBM уходил целый день, чтобы разместить всего тридцать пять атомов. Никто не поверил, что таким способом можно создать совершенно новую технологию. Вместо этого многие решили, что наноинженеры со временем изобретут способ создать ассемблеры – миниатюрные молекулярные машины, которые смогут собирать определенные молекулы точно так же, как машина по сборке шарикоподшипников собирает шарикоподшипники. Новая технология может основываться только на молекулярных машинах, которые будут собирать молекулярную продукцию.
Концепция была хороша, но с ее приложением на практике возникали большие проблемы. Из-за того, что ассемблеры заведомо должны быть гораздо сложнее по структуре, чем молекулы, которые они будут собирать, попытки спроектировать и построить сами ассемблеры изначально сталкивались с непреодолимыми трудностями. Насколько мне было известно, ни в одной лаборатории во всем мире еще не сделали ничего подобного. А теперь Рики сообщает мне как бы между делом, что в «Ксимосе» создали молекулярные ассемблеры, которые теперь собирают для них молекулы.
Конечно, я ему не поверил.
Я всю свою жизнь занимался технологиями, и у меня выработалась способность оценивать – что возможно, а что невозможно. Таких огромных прорывов вперед в технологиях никогда не бывало. И никогда не будет. Технологии – это один из видов знания, и, как все знания, технологии возникают, развиваются, созревают, совершенствуются. Поверить в обратное было все равно что поверить, будто братья Райт построили ракету и полетели на Луну, а не пролетели три сотни футов над песчаными дюнами Кити-Хок.
Нанотехнологии все еще находились на стадии Кити-Хок.
– Послушай, Рики, как вы на самом деле это делаете? – спросил я.
– Технические детали не важны, Джек.
– Это еще что за свежее дерьмо? Конечно, важны!
– Джек, – сказал он и одарил меня своей самой блистательной улыбкой.
– Ты в самом деле думаешь, что я тебя обманываю?
– Да, Рики, – сказал я. – Именно так я и думаю.
Я посмотрел вверх, на щупальца осьминога, которые меня окружали. И на множестве стеклянных поверхностей увидел множество своих отражений. Это смущало, сбивало с толку. Пытаясь собраться с мыслями, я посмотрел вниз, себе под ноги.
И заметил, что стеклянными здесь были не только дорожки, по которым мы ходили, но и некоторые части пола и нижнего, подземного этажа. Одна из таких прозрачных секций располагалась как раз неподалеку. Я пошел туда. Сквозь стекло я увидел стальные трубы и провода, проложенные ниже уровня земли. Я обратил внимание на провода, которые тянулись от склада к ближайшему прозрачному кубу, а оттуда поднимались вверх и соединялись с самыми мелкими трубочками сборочного комплекса.
Я понял, что по этим трубкам в систему сборки поступает органическое сырье, из которого потом собираются нужные молекулы.
Я проследил взглядом вдоль труб под полом и увидел, что они выходят из соседнего помещения. Перегородка между помещениями тоже была прозрачной. Там виднелись округлые днища больших стальных баков, на которые я обратил внимание раньше. Тех самых баков, про которые я подумал, что они похожи на маленький пивоваренный заводик. Потому что они и в самом деле были как раз тем, чем казались, – пивоваренным заводом. Аппаратурой с управляемой ферментацией для контролируемого выращивания микроорганизмов.
И тогда я понял, что это такое на самом деле.
Я сказал:
– Сукин ты сын…
Рики снова улыбнулся, пожал плечами и сказал:
– Ну, это целесообразно.
Эти баки в соседнем помещении действительно были чанами для контролируемого выращивания микроорганизмов. Только Рики делал не пиво – он делал микроорганизмы, и я совершенно ясно представлял, для чего они ему нужны. Не сумев создать настоящие наноассемблеры, «Ксимос» использовала бактерии, чтобы производить свои молекулы. Это была генетическая инженерия, а не нанотехнология.
– Ну, не совсем, – сказал Рики, когда я поделился с ним своими догадками. – Но я признаю, что мы используем гибридную технологию. В любом случае, это не так уж удивительно, правда?
Это была правда. Уже около десяти лет наблюдатели предсказывали, что генетическая инженерия, компьютерное программирование и нанотехнологии постепенно сольются в одно. Все три отрасли занимались сходной – и взаимосвязанной – деятельностью. Не такая уж большая разница была между использованием компьютера для декодирования частей бактериального генома и использованием компьютера для того, чтобы ввести в геном бактерии новые гены, заставляя ее производить новые протеины. И не было большой разницы между созданием новой бактерии, которая сумеет производить, скажем, молекулы инсулина, и созданием искусственного микромеханического ассемблера, который сумеет производить новые молекулы. Все эти процессы происходят на молекулярном уровне. В любом случае от людей требуется создать чрезвычайно сложную систему. Создание молекул – бесспорно, невероятно сложный процесс.
Нередко молекулу представляют как последовательность атомов, сцепленных друг с другом, как детали конструктора Лего. Однако это не совсем верное представление. Потому что, в отличие от частей конструктора Лего, атомы нельзя складывать друг с другом в любой последовательности, какая придет в голову. Каждый атом в молекуле подвергается воздействию мощных локальных сил – электрических и химических, – и нередко положение вставленного в молекулу атома оказывается нестабильным. Под действием этих сил атом может выскочить из своего места в цепочке. Или может остаться, но повернуться под неправильным углом. Или вся молекула из-за этого может свернуться в узел.
В результате молекулярное производство превращается в серию испытаний возможного и невозможного – для того, чтобы в конце концов подобрать такое расположение атомов и групп атомов в молекуле, при котором вся структура будет стабильной и будет функционировать желаемым образом. Перед лицом всех этих трудностей невозможно игнорировать тот факт, что в природе уже существуют молекулярные фабрики, способные производить большое количество молекул – эти фабрики называются клетками.
– К сожалению, клеточное производство не способно дать нам ожидаемый конечный результат, – сказал Рики. – Клетки производят для нас молекулярный субстрат – сырье, исходный материал, – а потом, уже с помощью нанотехнологических методов, мы собираем из этого сырья нужные молекулы.
Я указал на стальные баки:
– И какие клетки вы там выращиваете?
– Тета-ди 5972, – сказал он.
– И что это за бактерии?
– Один из штаммов кишечной палочки.
Кишечная палочка – довольно распространенная бактерия, большое количество кишечной палочки обитает в естественной природной среде, в том числе и внутри кишечника человека. Я спросил:
– А кто-нибудь подумал, что это не слишком хорошая идея – использовать бактерии, способные существовать в организме человека?
– Вообще-то нет, – сказал Рики. – Честно говоря, мы об этом не думали. Нам просто нужен был хорошо изученный вид бактерий, полностью описанный в литературе. Мы отбирали промышленный стандарт.
– Э-э…
– Как бы то ни было, Джек, – продолжал Рики, – вряд ли с этим будут какие-то проблемы. Этот штамм не способен жить в теле человека. Тета-ди 5972 оптимизирован под разнообразные питательные среды – чтобы удешевить стоимость его выращивания в лабораторных условиях. По-моему, эти бактерии могут расти даже на куче мусора.
– Значит, вот как вы получаете свои молекулы. Их для вас выращивают бактерии…
– Да, – сказал Рики, – Так мы получаем первичные молекулы. Мы производим двадцать семь разновидностей первичных молекул. Они собираются в относительно высокотемпературных условиях, при которых атомы более активны и быстрее соединяются друг с другом.
– Поэтому здесь так жарко?
– Да. Эффективность реакций максимальна при ста сорока семи градусах по Фаренгейту <147 градусов по Фаренгейту = 64 градусам по Цельсию>. При такой температуре мы с ними и работаем, чтобы поддерживать скорость рекомбинаций на максимуме. Но эти молекулы могут работать и при гораздо более низких температурах. Даже при сорока пяти-сорока градусах по Фаренгейту <40 – 45 градусов по Фаренгейту = 4 – 7 градусов по Цельсию> можно получить какое-то количество молекулярных комбинаций.
– И вам не нужны никакие дополнительные условия? – спросил я. – Вакуум? Повышенное давление? Сильное магнитное поле?
Рики покачал головой.
– Нет, Джек. Мы создаем такие условия, чтобы ускорить процесс сборки, но в них нет критической необходимости. Проблема решена очень элегантно. Соединять компоненты молекул друг с другом довольно просто.
– И, соединив эти компоненты молекул вместе, вы получаете в результате молекулярные ассемблеры?
– Да. А они потом собирают те молекулы, которые нам нужны.
Это в самом деле было очень умное решение – создавать молекулярные ассемблеры с помощью бактерий. Но Рики утверждал, что ассемблеры получаются почти автоматически – если для этого не нужно ничего, кроме высокой температуры. Зачем же тогда им понадобилась эта сложная стеклянная конструкция?
– Для повышения эффективности и разделения процесса, – объяснил Рики.
– Мы можем одновременно создавать до девяти разных ассемблеров в разных ветвях комплекса.
– А где ассемблеры собирают конечные молекулы?
– В этом же самом сборочном комплексе. Но сначала мы их перенастраиваем
Я не понял значения этого термина и покачал головой.
– Перенастраиваете?
– Это небольшое усовершенствование, которое мы разработали. Мы его уже запатентовали Понимаешь, наша система с самого начала работала правильно, но выход конечного продукта был слишком низким. Мы получали полграмма конечных молекул в час. При такой производительности на создание одной-единственной камеры потребовалось бы несколько дней. Мы никак не могли понять, в чем проблема. Конечный процесс сборки в ветвях комплекса происходил в газовой фазе. И оказалось, что молекулярные ассемблеры слишком тяжелые и тонут в такой разреженной среде. Бактерии, более легкие, плавают в следующем слое, над ассемблерами, и выбрасывают компоненты молекул, которые еще легче. Эти компоненты поднимаются кверху, выше слоя бактерий. Таким образом, ассемблеры не могли дотянуться до молекул, из которых они должны были собирать конечный продукт. Мы пытались применить различные технологии смешивания слоев, но они не давали результата.
– И что же вы сделали?
– Мы модифицировали процесс создания ассемблеров так, что у них появилось липотропное основание, с помощью которого ассемблеры могли приклеиваться к поверхности бактерий. Таким образом, ассемблеры получили гораздо лучший доступ к молекулам, и производительность немедленно возросла на пять порядков.
– Значит, теперь ваши ассемблеры прикреплены к бактериям?
– Именно. Они прикрепляются к наружной клеточной мембране.
Подойдя к ближайшему компьютеру, Рики вывел на плоский жидкокристаллический экран схематическое изображение ассемблера. С виду ассемблер напоминал зубчатую шестеренку со множеством спиралевидных отростков, направленных в разные стороны, и плотным узлом атомов в центре.
– Как я уже говорил, они фрактальные, – сказал Рики. – Поэтому выглядят точно так же и при меньшей степени увеличения. Как говорится, у черепашки с обеих сторон – спина, – он засмеялся и нажал еще несколько клавиш. – А вот посмотри, как выглядят они в сцепленном состоянии.
На экране появилось новое изображение. Ассемблер был прикреплен к более крупному объекту, похожему на удлиненную подушку, – как шестеренка, присоединенная к подводной лодке.
– Это бактерия Тета-ди, а на ней – ассемблер, – пояснил Рики.
Пока я смотрел, к бактерии прилипло еще несколько шестеренок-ассемблеров.
– И эти ассемблеры собирают готовые камеры?
– Совершенно верно. – Рики снова пробежал пальцами по клавиатуре. На экране появилось новое изображение. – Это наш конечный продукт, микромашина, которую собирают ассемблеры, – камера. Ты видел версию для кровеносной системы. Это – пентагоновская версия, она немного больше по размеру и приспособлена для работы в воздухе. То, на что ты смотришь, – это молекулярный вертолет.
– А где его пропеллер? – спросил я.
– Пропеллера нет. Машина летает за счет вот этих маленьких круглых выступов, которые торчат из нее под разными углами. Это моторы. В принципе, она маневрирует, используя вязкость воздуха.
– Используя что?
– Вязкость. Воздуха, – Рики улыбнулся. – Это же микромашина, помнишь? Это совершенно новый мир, Джек.
Какой бы революционной ни была новая технология, пентагоновские специалисты требовали от Рики конечный продукт – а предоставить продукт он не мог. Да, они построили камеру, которую невозможно уничтожить выстрелом, и эта камера прекрасно передавала изображения. Рики объяснил, что при испытаниях в закрытом помещении камеры работали превосходно. Но на открытой местности даже малейший ветерок сдувал их, словно облако пыли, – каковой они, собственно, и были.
Инженерная группа «Ксимоса» пыталась повысить мобильность отдельных составляющих камеры, но безуспешно. А тем временем в Департаменте обороны решили, что недостатки конструкции непреодолимы, и отказались от всей наноконцепции. Контракт с «Ксимосом» закрыли. Отдел развития компании должен был найти новый источник финансирования в течение шести недель.
Я спросил:
– Значит, вот почему в последние несколько недель Джулия была так озабочена поисками инвестиций?
– Да, – сказал Рики. – Если честно, вся эта компания может всплыть кверху брюхом еще до Рождества.
– Если только вам не удастся исправить микрокамеры, чтобы камера могла работать при ветре?
– Да, именно.
Я сказал:
– Рики, я программист. Я не могу помочь в решении проблемы мобильности агентов. Это вопрос молекулярного дизайна. Это работа для инженеров, а не для программистов.
– Да, я понимаю, – Рики немного помолчал, нахмурив брови. – Но на самом деле мы полагаем, что программные коды могут помочь в решении.
– Коды? В решении чего?
– Джек, я хочу быть с тобой честным до конца. Мы совершили ошибку, – сказал он. – Но это не наша вина, клянусь. Это не мы. Это подрядчики, – он пошел вверх по лестнице. – Пойдем, я тебе покажу.
Рики быстрым шагом направился в дальний конец помещения, туда, где я заметил открытый желтый подъемник, закрепленный у стены. Площадка подъемника была очень маленькой, и я чувствовал себя не слишком уютно из-за того, что подъемник был открытым, без кабинки. Я постарался смотреть вверх.
– Боишься высоты? – спросил Рики.
– Признаться, да. Ничего не могу с собой поделать.
– Ну, лучше так, чем идти наверх пешком, – Рики показал на металлическую лестницу, которая поднималась вдоль стены до самого потолка.
– Когда лифт не работает, нам приходится взбираться по этой лестнице.
Я пожал плечами.
– По мне, так лучше пешком.
Мы проехали на подъемнике до самого потолка, на высоту трехэтажного дома. Под потолком висела целая связка труб и проводов, а вдоль них тянулись узкие мостики из металлической сетки, чтобы рабочие могли обслуживать проводку. Я ненавидел металлическую сетку, потому что сквозь нее был виден пол – далеко внизу. Я старался не смотреть под ноги. Нам часто приходилось низко пригибаться, чтобы пройти под свисающими проводами.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43