А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Но и без магической тройки она не исчезнет, не будет нулевой.
Отсюда следует, что в достаточно большой и разнообразной совокупности случайно синтезированных полимеров можно найти такие, которые смогут выполнять функцию любого белка, например фермента, – такие опыты уже были поставлены. Американский исследователь X.С.Фокс смешивал сухие аминокислоты и нагревал их до 200?С; в результате получались полипептиды-цепочки из аминокислотных остатков, практически неотличимые от белков малой молекулярной массы. Мономеры в этих полимерах были распределены совершенно случайно, и в этой смеси вряд ли можно было найти две одинаковые молекулы. По-видимому, такие соединения – протеиноиды – легко возникали на начальном этапе существования Земли, например на склонах вулканов.
Х.С.Фокс и его сотрудник Л.Бахадур проверили, может ли смесь протеиноидов работать как фермент. Оказалось, что она проявляла активность, имитирующую функцию ферментов пирофосфатазы, каталазы, АТФазы. Другие исследователи, многократно проверив опыты Фокса, пришли к выводу, что подобная смесь может имитировать функцию практически любого фермента. Возможно, что протеиноиды катализировали синтез первых генов – матриц, на которых синтезировались уже настоящие белки, но тоже со случайными последовательностями. Как только среди них нашлась одна, способная ускорить синтез и репликацию своей матрицы – нуклеиновой кислоты, труднейшая проблема происхождения жизни была решена.
Для этого не требовалось сверхастрономического числа Вселенных и вмешательства сверхразума. В опытах Фокса участвовало не 10230 молекул, а существенно меньше – 1023,– одного моля, как говорят химики. Для возникновения жизни вполне хватило бы случайных химических реакций в достаточно большой грязной луже, вроде той, которую воспел Н.В.Гоголь в «Миргороде».
Опровергнуть эту концепцию можно посетив несколько планет земного типа из других звездных систем. Вполне возможно обнаружить на некоторых из них, хотя бы на одной, жизнь. Вот если тамошние гены и кодируемые ими белки будут гомологичны генам и белкам земных организмов, можно принять идею Творца.
Пока это не грозит: мы знаем, что и на Земле один и тот же ген не возникал дважды, как не было написано дважды любое литературное произведение, тот же «Гамлет».

Глава 10
Эволюционная медицина

Причина болезней – вредоносные факторы, что может быть очевиднее? Эта идея определяет стратегию профилактики и лечения болезней, на ней строят все медицинские теории. С развитием медицины лишь уточнялся характер зла и тактика борьбы с ним. В давние времена шаманы защищали здоровых от злых сил и изгоняли их из больных заклинаниями и ритуальными танцами. Сейчас, уяснив роль микробов в инфекционных болезнях, врачи ограждают людей от контакта с «заразой», а при заболевании стараются убить микробов химиопрепаратами.
Представление о болезни как о результате случайного столкновения организма с повреждающим агентом предопределило то, что способы лечения ищут эмпирически. Правильность такого подхода, казалось бы, подтверждается успехами практической медицины: давно нет эпидемий чумы и холеры, уносивших сотни тысяч жизней; некоторые ранее неизлечимые болезни стали излечимы; физические и химические методы анализа открыли новые возможности диагностики и лечения; успехи трансплантологии поражают воображение. Вроде бы все в порядке, чего тут теоретизировать? Но многое свидетельствует о том, что медицина сейчас пребывает в состоянии кризиса. Даже в таком древнем разделе медицины, как лечение ран, хирургия зашла в тупик, и сегодня в практику вводят препараты, от которых отказались много лет назад. Врачи вновь обращаются к рецептам тысячелетней давности, пытаясь найти средства для более эффективного лечения. Успешно конкурируют с официальной медициной знахари, экстрасенсы и колдуны. Становится очевидным, что медицина исчерпала возможности эмпирического развития и не сможет избежать пути, по которому шли другие науки. Этот путь лежит через новую теорию. В медицине – через новую теорию болезни (С.С.Фейгельман).
У физиков и биологов есть принципиальная разница в подходе к явлениям. Физики задают себе вопрос – почему? Вопросы «зачем» – зачем камень твердый, а вода жидкая? зачем светит Солнце? – в лучшем случае не имеют смысла. Другое дело – биология. Здесь вопрос «зачем у живого существа, сформировалось то или иное свойство?» не только правомочен, но и необходим, так как помогает проникнуть в существо явления. Ведь эволюция отбирает те свойства, которые полезны для вида и помогают ему выжить.
Несмотря на множество медицинских теорий, ни одна из них не раскрывает биологической сущности болезней, то есть не отвечает на вопрос «зачем природа сохранила такое свойство организмов – способность болеть?». Медики-эволюционисты считают, что болезнь – это форма приспособления организма к повреждающим факторам среды обитания. По их мнению, в процессе эволюции в организме развиваются механизмы адаптации к вредным воздействиям. Природа постоянно испытывает их на прочность, и если они оказываются слабы, то организм погибает. Поэтому болезни – средство отбора наиболее приспособленных и двигатель биологического прогресса.
Такой подход оказался для медицины совершенно бесплодным, ведь получается, что лечение болезней препятствует совершенствованию вида, а врач, помогающий больному, обрекает на страдания его потомков.
Кроме того, эта точка зрения принижает возможности эволюции. Для восприятия воздействий окружающей среды, в том числе и патогенных, у организма есть рецепторы. В некоторых случаях это специфические молекулы, иногда – клетки, бывает – целые органы. В ходе эволюции виду достаточно было бы потерять, например, рецепторы для взаимодействия с микробами, и инфекционные болезни не возникали бы. Организму не пришлось бы покупать часть здоровья ценой болезней, вырабатывая иммунитет, да и сама иммунная система была бы не нужна. Неужели природа, сумев создать живое из неживого и из простейшего живого – человека, не додумалась до такого очевидного решения, чтобы предотвратить страдания и массовую гибель своих созданий от инфекционных болезней?
По-видимому существует только один ответ на этот вопрос: все рецепторы, присущие данному виду, необходимы для нормального существования, а сами болезнетворные микробы зачем-то нужны организму.
Так можно договориться и до того, что и кирпич, падающий на голову человеку и «взаимодействующий» таким образом с его организмом, – условие, необходимое для нормального существования! Дело, однако, в том, что полезность или вредность внешних воздействий зависит от их количественного соответствия потребностям организма. Свет, необходимый нам, чтобы видеть, может и ослепить, если его слишком много. Так и давление на черепную коробку, создаваемое кирпичом, слишком сильно превышает одну атмосферу, необходимую для нормальной жизни. Но и вообще без внешнего давления, в вакууме, организм не выживет.
Принято считать, что болезнь – результат нападения микробов на макроорганизм. Что им нужно? Тепло, питательная среда. Все это они получают. Но парадокс в том, что, победив, то есть, убив хозяина, победители погибают вместе с побежденным, – ибо необходимые им условия поддерживает только живой организм. Зачем им такая победа?
Итак, ни болезнь – борьба организма с микробами, в которой много «агрессоров» гибнет, ни сама победа в этой борьбе микробам не нужны. Макроорганизмам, и это каждый знает по себе, от болезней тоже одни мучения. Так зачем же нужны болезни? Зачем эволюция закрепила в нашем генофонде способность реагировать на микроорганизмы, трафаретные формы некоторых болезней, характерные клинические симптомы, схемы выздоровления?
Если оставить в стороне такие эмоциональные понятия, как страдание, борьба, победа, то придется признать, что взаимодействие с болезнетворными микробами макроорганизмам необходимо. Иначе у них уже выработалась бы толерантность (безразличие) к ним, как она выработалась в наших организмах по отношению ко многим микробам, поражающим зверей, птиц, растения.
Отрицательные результаты взаимодействия, которые мы замечаем и называем болезнью, – только поверхностная, видимая часть явления. Главная же – потребность организма в «микробных веществах».
Согласно концепции, которая находит все больше подтверждений, некоторые клеточные органеллы, например митохондрии, возникли в результате симбиоза микробов с клеткой и их трансформации. Так это или нет, но клетке, по-видимому, нужны вещества микробного происхождения (речь идет не об известных всем симбионтах, например из кишечника, а о возбудителях инфекционных болезней). Те из веществ, которые не может синтезировать сам организм, подобно незаменимым аминокислотам и витаминам, ему приходится добывать извне, приглашая микробов пожить за свой счет. Как он мог бы это сделать?
Многие процессы в организме регулируются с помощью пары противоположно действующих механизмов. Таковы возбуждение и торможение нервных процессов, симпатическое и парасимпатическое управление вегетативными функциями – можно привести много примеров. Вероятно, кроме иммунологических механизмов, направленных на уничтожение микробов, есть и система, стимулирующая их размножение. Когда возникает необходимость в «микробных витаминах», эта система активизируется и поддерживает репродукцию возбудителей, а иммунная система следит, чтобы их не стало слишком много. Баланс нарушается – начинается болезнь.
По-видимому, стимулирующая система, как и иммунная, специфична. Она выясняет, какого именно вещества не хватает, и способствует размножению соответствующего микроба.
Есть факты, подтверждающие, что стимулирующая система – реальность. У здоровых людей сыворотка крови подавляет рост многих патогенных микробов. Однако бывают случаи, когда сыворотка не только не бактерицидна, но и способствует размножению микрофлоры. Именно в этих случаях можно попытаться биохимически определить те факторы, с помощью которых организм «вызывает микробов на себя».
Итак, согласно изложенной гипотезе, инфекционные болезни развиваются вовсе не из-за агрессивности микробов. Инициирует взаимодействие с ними сам макроорганизм, а заболевание – результат несовершенства или поломки систем, регулирующих отношения индивидуума с микробом.
Отсюда не только следует теоретический вывод о закономерности болезней и их связи с необходимыми процессами жизнедеятельности, но и открываются новые возможности для медицинской практики. Надо бы научиться наряду с активностью иммунитета измерять активность стимулирующей системы. Тогда можно будет прогнозировать риск заболеть той или иной инфекционной болезнью. Это позволило бы защищать человека целенаправленно, делать ему прививки не «списком», а только те, что необходимы. Скольких осложнений, следующих за тотальной вакцинацией, можно было бы избежать!
Если гипотеза верна, сами прививки могли бы стать ненужными. Активность стимулирующей системы можно было бы снизить, снабжая организм необходимыми «микробными витаминами» в виде аптечных препаратов. Можно представить себе и другие обнадеживающие перспективы. Но они так и останутся перспективами, пока гипотеза не проверена независимыми исследователями.

Глава 11
Геронтология и эволюционная биология

Приход человека в мир – уход (рождение и смерть); пленение духа в теле – его освобождение; сотворение мира – конец света: «конец придет – ведь было же начало. Мир родился – мир должен умереть» (Беранже). От этих пар – рифм один шаг до следующей: развитие – старение.
В классической поэзии известно отклонение, а то и вовсе отказ от парных созвучий в окончаниях строк, – это белые стихи. Пара «рождение – смерть» (или «жизнь – смерть») зарифмована жестко; тут отклонение от рифмования, иначе говоря, – бессмертие, противоречит не только биологической закономерности, но, если хотите, и здравому смыслу: весь опыт наблюдения за природой убеждает нас в том, что физического бессмертия – на индивидуальном уровне – не существует. Сознательно не касаемся мифов, легенд, религиозных представлений, утверждающих обратное, равно как и оставляем в стороне проблему бессмертия духовного, – короче говоря, всего того иррационального, что не составляет предмета анализа строгой науки, конкретно – естествознания (В.Л.Ушаков).
Итак, смерть индивида – факт незыблемый и исключений не являющий. Он имманентен живой природе и, если угодно, биологичен, поскольку смерть (естественная, конечно) – закономерное следствие физиологической инволюции организма: снижения отдельных его функций, отказа ряда систем – всего того, что в обиходе зовется старением. И это ясно: по принципу рифмы, если есть развитие – от момента оплодотворения яйцеклетки до половозрелости, то старение – от периода выполнения репродуктивного, то есть видового, предназначения до смерти – быть также обязано. Ну, и дальше: если есть программа индивидуального развития особи, ее онтогенеза (а такая жесткая генетическая программа существует), то, по принципу рифмы опять же, должна быть и генетическая программа старения. Вот тут-то и возникает вопрос: должна ли?
В геронтологии сразу было принято за очевидный факт, за аксиому, что специальная программа старения организма действительно существует (хотя запрограммированность старения и смерти никем никогда не была доказана.) Вероятно, это связано с тем, что явления, кажущиеся естественными, на начальном этапе развития новой науки не обсуждаются: эту привелегию может себе позволить нечто уже устоявшееся, авторитетное – вроде физики или философии. Минуло около ста лет с момента возникновения геронтологии, и вот в 60-х годах нашего столетия вопрос о том, действительно ли старение запрограммировано, был наконец поставлен. И если оно запрограммировано, то что это за программа: саморазрушения организма? его самоликвидации? Ответ – в качестве общего мнения – был категоричен: программа старения существует, это программа самоликвидации особи (в массе – поколения), она совершенно необходима для отмирания поколения, чтобы освободить место поколению следующему, а сама по себе сменяемость поколений – необходимое условие для лучшей приспособляемости вида в целом, так же, как и внутривидовое разнообразие признаков, полиморфизм, – одно из жестких условий выживания вида.
Что ж, последнее положение этого вердикта (сменяемость поколений – фактор стабильности вида во времени) можно, пожалуй, принять. Однако позволим себе усомниться вот в чем: так ли уж очевидно, что для оптимальной сменяемости поколений необходима программа самоликвидации отдельно взятой особи?
Безусловно, на данный вопрос природа отвечает положительно… в некоторых случаях. И это те случаи, когда результат программы самоликвидации доступен для наблюдения и проявляется с неизбежностью чуть ли не апокалиптической. Тут действительно ситуация, когда для двух следующих друг за другом поколений не хватает либо пищевых ресурсов, либо мест обитания (возможно и сочетание этих «нехваток»). Так, к примеру, лососи после нереста гибнут массами – и не просто массами, а все, поскольку физиологические перестройки, связанные с размножением, напрочь разрушают их организм. Менее известный, но тоже характерный пример: мексиканская агава, прожив девять лет, на десятый цветет, дает плод и тут же засыхает. Поденка готовится к акту размножения и, выполнив это единственное в жизни предназначение, не доживает до следующего дня.
Проанализируем. В первых двух случаях связь размножения с программой самоликвидации хотя и не совсем ясна в деталях, но понятна в чертах более общих. Так, если у некоторых видов рыб удалить половые железы, а у растения – цветочный побег, никакой активной самоликвидации не будет: организм просто тихо угаснет, прожив в несколько раз дольше обычного. А вот последний случай – несколько иного рода и, надо сознаться, включен не без умысла: с поденкой аналогичный трюк повторить нельзя. Что ни делай со взрослой особью, она все равно погибнет от голода, ибо у нее не предусмотрено одной необходимой детали – ротового отверстия. Так природа повелела, решив, что все равно не понадобится. Отсюда законный вопрос: нужна ли в данном случае специальная программа самоликвидации? Вряд ли. Родилась, совершила кладку яиц, а далее – твои проблемы: можешь – живи, а не можешь – умирай; на стабильности вида это никак не скажется. Вот если бы требовался уход за потомством – другое дело. Короче говоря, природа, в чем-то довольно щедрая, на поденке явно решила сэкономить.
И что следует из предложенных примеров?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35