А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 


Перестройка идеалов и норм средневековой науки, начатая в эпоху Возрождения, осуществлялась на протяжении довольно длительного исторического периода. На первых порах новое содержание облекалось в старую форму, а новые идеи и методы соседствовали со старыми. Поэтому в науке Возрождения мы встречаем наряду с принципиально новыми познавательными установками (требование экспериментального подтверждения теоретических построений, установка на математическое описание природы) и довольно распространённые приёмы описания и объяснения, заимствованные из прошлой эпохи.
Показательно, что вначале идеал математического описания природы утверждался в эпоху Возрождения, исходя из традиционных для средневековой культуры представлений о природе как книге, написанной «божьими письменами». Затем эта традиционная мировоззренческая конструкция была наполнена новым содержанием и получила новую интерпретацию: «Бог написал книгу природы языком математики».
Итак, первый блок оснований науки составляют идеалы и нормы исследования. Они образуют целостную систему с достаточно сложной организацией. Эту систему, если воспользоваться аналогией А. Эддингтона, можно рассмотреть как своего рода «сетку метода», которую наука «забрасывает в мир» с тем, чтобы «выудить из него определённые типы объектов». «Сетка метода» детерминирована, с одной стороны, социокультурными факторами, определёнными мировоззренческими презумпциями, доминирующими в культуре той или иной исторической эпохи, с другой – характером исследуемых объектов. Это означает, что с трансформацией идеалов и норм меняется «сетка метода» и, следовательно, открывается возможность познания новых типов объектов.
Определяя общую схему метода деятельности, идеалы и нормы регулируют построение различных типов теорий, осуществление наблюдений и формирование эмпирических фактов. Они как бы вплавляются, впечатываются во все эти процессы исследовательской деятельности. Исследователь может не осознавать всех применяемых в поиске нормативных структур, многие из которых ему представляются само собой разумеющимися. Он чаще всего усваивает их, ориентируясь на образцы уже проведённых исследований и на их результаты. В этом смысле процессы построения и функционирования научных знаний демонстрируют идеалы и нормы, в соответствии с которыми создавались научные знания.
В системе таких знаний и способов их построения возникают своеобразные эталонные формы, на которые ориентируется исследователь. Так, например, для Ньютона идеалы и нормы организации теоретического знания были выражены евклидовой геометрией, и он создавал свою механику, ориентируясь на этот образец. В свою очередь, ньютоновская механика была своеобразным эталоном для Ампера, когда он поставил задачу создать обобщающую теорию электричества и магнетизма.
Вместе с тем историческая изменчивость идеалов и норм, необходимость вырабатывать новые регулятивы исследования порождает потребность в их осмыслении и рациональной экспликации. Результатом такой рефлексии над нормативными структурами и идеалами науки выступают методологические принципы, в системе которых описываются идеалы и нормы исследования.

Научная картина мира

Второй блок оснований науки составляет научная картина мира. В развитии современных научных дисциплин особую роль играют обобщённые схемы – образы предмета исследования, посредством которых фиксируются основные системные характеристики изучаемой реальности. Эти образы часто именуют специальными картинами мира. Термин «мир» применяется здесь в специфическом смысле – как обозначение некоторой сферы действительности, изучаемой в данной науке («мир физики», «мир биологии» и т. п.). Чтобы избежать терминологических дискуссий, имеет смысл пользоваться иным названием – картина исследуемой реальности. Наиболее изученным её образцом является физическая картина мира. Но подобные картины есть в любой науке, как только она конституируется в качестве самостоятельной отрасли научного знания.
Обобщённая характеристика предмета исследования вводится в картине реальности посредством представлений: 1) о фундаментальных объектах, из которых полагаются построенными все другие объекты, изучаемые соответствующей наукой; 2) о типологии изучаемых объектов; 3) об общих закономерностях их взаимодействия; 4) о пространственно-временной структуре реальности. Все эти представления могут быть описаны в системе онтологических принципов, посредством которых эксплицируется картина исследуемой реальности и которые выступают как основание научных теорий соответствующей дисциплины. Например, принципы: мир состоит из неделимых корпускул; их взаимодействие осуществляется как мгновенная передача сил по прямой; корпускулы и образованные из них тела перемещаются в абсолютном пространстве с течением абсолютного времени – описывают картину физического мира, сложившуюся во второй половине XVII в. и получившую впоследствии название механической картины мира.
Переход от механической к электродинамической (последняя четверть XIX в.), а затем к квантово-релятивистской картине физической реальности (первая половина XX в.) сопровождался изменением системы онтологических принципов физики. Особенно радикальным он был в период становления квантово-релятивистской физики (пересмотр принципов неделимости атомов, существования абсолютного пространства – времени, лапласовской детерминации физических процессов).
По аналогии с физической картиной мира можно выделить картины реальности в других науках (химии, биологии, астрономии и т. д.). Среди них также существуют исторически сменяющие друг друга типы картин мира, что обнаруживается при анализе истории науки. Например, принятый химиками во времена Лавуазье образ мира химических процессов был мало похож на современный. В качестве фундаментальных объектов полагались лишь некоторые из известных ныне химических элементов. К ним приплюсовывался ряд сложных соединений (например, извести), которые в то время относили к «простым химическим субстанциям». После работ Лавуазье флогистон был исключён из числа таких субстанций, но теплород ещё числился в этом ряду. Считалось, что взаимодействие всех этих «простых субстанций» и элементов, развёртывающееся в абсолютном пространстве и времени, порождает все известные типы сложных химических соединений.
Такого рода картина исследуемой реальности на определённом этапе истории науки казалась истинной большинству химиков. Она целенаправляла как поиск новых фактов, так и построение теоретических моделей, объясняющих эти факты.
Каждая из конкретно-исторических форм картины исследуемой реальности может реализовываться в ряде модификаций, выражающих основные этапы развития научных знаний. Среди таких модификаций могут быть линии преемственности в развитии того или иного типа картины реальности (например, развитие ньютоновских представлений о физическом мире Эйлером, развитие электродинамической картины мира Фарадеем, Максвеллом, Герцем, Лоренцем, каждый из которых вводил в эту картину новые элементы). Но возможны и другие ситуации, когда один и тот же тип картины мира реализуется в форме конкурирующих и альтернативных друг другу представлений о физическом мире и когда одно из них в конечном итоге побеждает в качестве «истинной» физической картины мира (примерами могут служить борьба Ньютоновой и Декартовой концепций природы как альтернативных вариантов механической картины мира, а также конкуренция двух основных направлений в развитии электродинамической картины мира – программы Ампера – Вебера, с одной стороны, и программы Фарадея – Максвелла, с другой).
Картина реальности обеспечивает систематизацию знаний в рамках соответствующей науки. С ней связаны различные типы теорий научной дисциплины (фундаментальные и частные), а также опытные факты, на которые опираются и с которыми должны быть согласованы принципы картины реальности. Одновременно она функционирует в качестве исследовательской программы, которая целенаправляет постановку задач как эмпирического, так и теоретического поиска и выбор средств их решения.
Связь картины мира с ситуациями реального опыта особенно отчётливо проявляется тогда, когда наука начинает изучать объекты, для которых ещё не создано теории и которые исследуются эмпирическими методами. Одной из типичных ситуаций может служить роль электродинамической картины мира в экспериментальном изучении катодных лучей. Случайное обнаружение их в эксперименте ставило вопрос о природе открытого физического агента. Электродинамическая картина мира требовала все процессы природы рассматривать как взаимодействие «лучистой материи» (колебаний эфира) и частиц вещества, которые могут быть электрически заряженными или электрически нейтральными. Отсюда возникали гипотезы о природе катодных лучей: одна из них предполагала, что новые физические агенты представляют собой поток частиц, другая рассматривала эти агенты как разновидность излучения. Соответственно этим гипотезам ставились экспериментальные задачи и вырабатывались планы экспериментов, посредством которых была выяснена природа катодных и рентгеновских лучей. Физическая картина мира целенаправляла эти эксперименты, последние же, в свою очередь, оказывали обратное воздействие на картину мира, стимулируя её уточнение и развитие (например, выяснение природы катодных лучей в опытах Крукса, Перрена, Томсона было одним из оснований, благодаря которому в электродинамическую картину мира было введено представление об электронах как «атомах электричества», не сводимых к «атомам вещества»).
Кроме непосредственной связи с опытом картина мира имеет с ним опосредованные связи через основания теорий, которые образуют теоретические схемы и сформулированные относительно них законы.
Картину мира можно рассматривать в качестве некоторой теоретической модели исследуемой реальности. Но это особая модель, отличная от моделей, лежащих в основании конкретных теорий.
Во-первых, они различаются по степени общности. На одну и ту же картину мира может опираться множество теорий, в том числе и фундаментальных. Например, с механической картиной мира были связаны механика Ньютона – Эйлера, термодинамика и электродинамика Ампера – Вебера. С электродинамической картиной мира связаны не только основания максвелловской электродинамики, но и основания механики Герца.
Во-вторых, специальную картину мира можно отличить от теоретических схем, анализируя образующие их абстракции (идеальные объекты). Так, в механической картине мира процессы природы характеризовались посредством таких абстракций, как: «неделимая корпускула», «тело», «взаимодействие тел, передающееся мгновенно по прямой и меняющее состояние движения тел», «абсолютное пространство» и «абсолютное время». Что же касается теоретической схемы, лежащей в основании ньютоновской механики (взятой в её эйлеровском изложении), то в ней сущность механических процессов характеризуется посредством иных абстракций таких как, «материальная точка», «сила», «инерциальная пространственно-временная система отсчёта».
Аналогичным образом можно выявить различие между конструктами теоретических схем и конструктами картины мира, обращаясь к современным образцам теоретического знания. Так, в рамках фундаментальной теоретической схемы квантовой механики процессы микромира характеризуются в терминах отношений вектора состояния частицы к вектору состояния прибора. Но эти же процессы могут быть описаны «менее строгим» образом, например в терминах корпускулярно-волновых свойств частиц, взаимодействия частиц с измерительными приборами определённого типа, корреляций свойств микрообъектов к макроусловиям и т. д. И это уже не собственно язык теоретического описания, а дополняющий его и связанный с ним язык физической картины мира.
Идеальные объекты, образующие картину мира, и абстрактные объекты, образующие в своих связях теоретическую схему, имеют разный статус. Последние представляют собой идеализации, и их нетождественность реальным объектам очевидна. Любой физик понимает, что «материальная точка» не существует в самой природе, ибо в природе нет тел, лишённых размеров. Но последователь Ньютона, принявший механическую картину мира, считал неделимые атомы реально существующими «первокирпичиками» материи. Он отождествлял с природой упрощающие её и схематизирующие абстракции, в системе которых создаётся физическая картина мира. В каких именно признаках эти абстракции не соответствуют реальности – это исследователь выясняет чаще всего лишь тогда, когда его наука вступает в полосу ломки старой картины мира и замены её новой.
Будучи отличными от картины мира, теоретические схемы всегда связаны с ней. Установление этой связи является одним из обязательных условий построения теории.
Благодаря связи с картиной мира происходит объективизация теоретических схем. Составляющая их система абстрактных объектов предстаёт как выражение сущности изучаемых процессов «в чистом виде». Важность этой процедуры можно проиллюстрировать на конкретном примере. Когда в механике Герца вводится теоретическая схема механических процессов, в рамках которой они изображаются только как изменение во времени конфигурации материальных точек, а сила представлена как вспомогательное понятие, характеризующее тип такой конфигурации, то все это воспринимается вначале как весьма искусственный образ механического движения. Но в механике Герца содержится разъяснение, что все тела природы взаимодействуют через мировой эфир, а передача сил представляет собой изменение пространственных отношений между частицами эфира. В результате теоретическая схема, лежащая в основании механики Герца, предстаёт уже как выражение глубинной сущности природных процессов.
Процедура отображения теоретических схем на картину мира обеспечивает ту разновидность интерпретации уравнений, выражающих теоретические законы, которую в логике называют концептуальной (или семантической) интерпретацией и которая обязательна для построения теории. Таким образом, вне картины мира теория не может быть построена в завершённой форме.
Картины реальности, развиваемые в отдельных научных дисциплинах, не являются изолированными друг от друга. Они взаимодействуют между собой. В этой связи возникает вопрос: существуют ли более широкие горизонты систематизации знаний, формы их систематизации, интегративные по отношению к специальным картинам реальности (дисциплинарным онтологиям)? В методологических исследованиях такие формы уже зафиксированы и описаны. К ним относится общая научная картина мира, которая выступает особой формой теоретического знания. Она интегрирует наиболее важные достижения естественных, гуманитарных и технических наук – это достижения типа представлений о нестационарной Вселенной и Большом взрыве, о кварках и синергетических процессах, о генах, экосистемах и биосфере, об обществе как целостной системе, о формациях и цивилизациях и т. д. Вначале они развиваются как фундаментальные идеи и представления соответствующих дисциплинарных онтологий, а затем включаются в общую научную картину мира.
И если дисциплинарные онтологии (специальные научные картины мира) репрезентируют предметы каждой отдельной науки (физики, биологии, социальных наук и т. д.), то в общей научной картине мира представлены наиболее важные системно-структурные характеристики предметной области научного познания как целого, взятого на определённой стадии его исторического развития.
Революции в отдельных науках (физике, химии, биологии и т. д.), меняя видение предметной области соответствующей науки, постоянно порождают мутации естественно-научной и общенаучной картин мира, приводят к пересмотру ранее сложившихся в науке представлений о действительности. Однако связь между изменениями в картинах реальности и кардинальной перестройкой естественно-научной и общенаучной картин мира не однозначна. Нужно учитывать, что новые картины реальности вначале выдвигаются как гипотезы. Гипотетическая картина проходит этап обоснования и может весьма длительное время сосуществовать рядом с прежней картиной реальности. Чаще всего она утверждается не только в результате продолжительной проверки опытом её принципов, но и благодаря тому, что эти принципы служат базой для новых фундаментальных теорий.
Вхождение новых представлений о мире, выработанных в той или иной отрасли знания, в общенаучную картину мира не исключает, а предполагает конкуренцию различных представлений об исследуемой реальности.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55