А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Саламу принадлежит высказывание:
Если эта теория справедлива, то мы, возможно, очень близки к окончательному и полному объединению всех взаимодействии и обладающего спином вещества, в котором (объединении) фундаментальные заряды служат проявлением скрытых размерностей пространства.

Геометризация природы

Мы убедились, насколько близка к реализации мечта Эйнштейна о построении единой теории поля на основе геометрии. В современном варианте теории Калуцы-Клейна все силы природы, подобно гравитации, рассматриваются как проявление структуры пространства-времени. То, что мы обычно называем гравитацией, обусловлено кривизной четырехмерного пространства-времени, тогда как остальные силы обусловлены кривизной пространства более высокой размерности. Все силы природы выступают просто как проявление скрытой геометрии. Еще в 1870 г. математик У. К. Клиффорд, обращаясь с мемуаром «О пространственной теории материи» в престижное Кембриджское философское общество, писал:
Небольшие участки пространства напоминают холмы на ровной в среднем поверхности... Подобные деформации (или искривления) непрерывным образом, точно волна, переходят из одной области пространства в другую... Изменение кривизны пространства и есть то явление, о котором мы говорим как о движении материи. Вообще в физическом мире не происходит ничего, кроме такого изменения.
Эти мысли звучат удивительно пророчески, если вспомнить об общей теории относительности, примерно полвека спустя созданной Эйнштейном. Однако Клиффорд, по-видимому, пошел дальше общей теории относительности, предположив, что не только силы, но и частицы вещества в сущности представляют собой всего лишь «кочки» и «ухабы» пустого пространства.
Есть глубокие основания предполагать, что вся Вселенная, включая, по-видимому, «твердое» вещество, воспринимаемое нашими органами чувств, – это всего лишь проявление извилистого ничто. Мир в конечном итоге окажется слепком абсолютной пустоты, самоорганизованным вакуумом. Геометрия сыграла роль повивальной бабки науки. Кропотливая работа многих поколений астрономов, наносивших на карты звездного неба траектории небесных тел, привела в конечном счете к ньютоновской научной революции и объяснила движение небесных светил с помощью сил и полей. Теперь круг замыкается: поля и взаимодействия получают объяснение на языке геометрии.
В начале 60-х годов американский физик-теоретик Джон Уилер, обобщив труды Клиффорда и Эйнштейна, попытался создать всеобъемлющую теорию, основанную лишь на геометрии пустого пространства-времени. Он назвал свою программу геометродинамикой. Ее цель состоит в объяснении природы как частиц, так и взаимодействий на основе геометрии.
Хорошей иллюстрацией общих идей, лежащих в основе теории Уилера, может служить его модель электрического заряда. По мнению Уилера, заряженная частица представляет собой нечто вроде входа в крошечный туннель, соединяющий друг с другом точки пространства и проходящий через другое измерение. Противоположный конец туннеля предстает перед нами как другая частица с зарядом противоположного знака. Таким образом, два конца уилеровской «кротовой норы» могли бы соответствовать, например, паре электрон – позитрон. Физики прошлого века сказали бы, что электрические силовые линии сходятся к заряженной частице и заканчиваются на ней, а в теории Уилера эти линии просто концентрируются в норе, вновь появляясь с другого конца (рис. 28). Согласно этим представлениям, в источниках электрического поля вообще нет необходимости: нужны лишь «дыры» в пространстве, засасывающие в себя электрические поля.
Геометродинамика обладает множеством подобных замечательных свойств, однако эта теория никогда не пользовалась особым успехом. Сам Уилер писал, что «наиболее очевидным недостатком теории является то, что в ней вообще нет естественного места для спина 1/2, и для частицы нейтрино в частности».
В дальнейшем Уилер пришел к убеждению, что вообще никакая теория, в которой изначально принимается существование пространства-времени, не может объяснить само это понятие. В частности, размерность пространства-времени привносится с самого начала в такую теорию и потому не может быть следствием. Любая законченная теория природы должна объяснить существование «исходного материала» – самого пространства-времени, – из которого далее строится геометродинамический мир.



Рис. 28. Уилер предположил, что электрическая заряженная частица могла бы представлять собой торец крохотной трубки – «кротовой норы», проходящей через другое измерение пространства и соединяющейся с привычным нам трехмерным пространством в том месте, где во Вселенной находится частица с противоположным зарядом.

Уилер полагает, что подобная теория может основываться лишь на идеях квантовой физики, и предвидит время, когда мы поймем, каким образом именно квант (а не пространство-время) служит основным «кирпичиком» мироздания.
Теперь нам уже ясно, что неудача теории Уплера отчасти обусловлена тем, что она ограничивается четырьмя измерениями. При полном числе измерений, равном одиннадцати, резко возрастает разнообразие и сложность физических структур, которые удается построить. В теории Калуцы-Клейна частицы рассматриваются не как «кротовые норы», а как возбуждения пространства с одиннадцатимерной геометрией. Остается только надеяться, что саму эту геометрию удастся объяснить с помощью квантовых явлений, как это предлагается программой Уилера.

Исследование скрытых измерений

Сколь бы прекрасной ни была природа, однако сами по себе красота и изящество теории не могут убедить физиков в ее истинности. Необходимы неопровержимые физические доказательства. Могущество и элегантность одиннадцатимерной теории Калуцы-Клейна обязывают нас относиться к ней серьезно, однако, если не найдется никаких способов доказать существование семи дополнительных пространственных измерений, теория в значительной мере потеряет свою привлекательность.
К счастью, по-видимому, можно продемонстрировать существование дополнительных измерений. Чтобы теория Калуцы-Клейна была единственной, семь дополнительных измерений пространства должны свернуться, по всей вероятности, в форме 7-сферы диаметром порядка 10-32 см. Изучение подобных ультрамикроскопических структур представляет серьезный вызов современной физике. Пока столь малые объекты нам не подвластны, ибо нечего направить «внутрь» 7-сферы для ее изучения.
В квантовой физике каждому масштабу длин сопоставляется масштаб энергий (или эквивалентных масс). Например, диаметр ядра (около 10-12 см) соответствует примерно массе пиона. Чем меньше изучаемый масштаб длин, тем выше необходимая для этого энергия. Для изучения кварковой структуры протона требуются энергии, эквивалентные по крайней мере десятикратной массе протона. Значительно выше по шкале энергий расположена масса, соответствующая Великому объединению (примерно 10^14 масс протона). Если нам когда-либо удастся достичь столь огромной массы (энергии), от чего мы сегодня весьма далеки, то появится возможность изучить мир Х-частиц, в котором стираются различия между кварками и лептонами.
Какая же энергия необходима, чтобы проникнуть «внутрь» 7-сферы и исследовать дополнительные измерения пространства? Согласно теории Калуцы-Клейна, требуется превзойти масштаб Великого объединения и достичь энергий, эквивалентных 10^19 масс протона. Лишь при таких невообразимо огромных энергиях удалось бы непосредственно наблюдать проявления дополнительных измерений пространства.
Эта огромная величина – 10^19 масс протона – носит название массы Планка, так как она была впервые введена Максом Планком, создателем квантовой теории. При энергии, соответствующей массе Планка, все четыре взаимодействия в природе слились бы в единую Суперсилу, а десять пространственных измерений оказались бы полностью равноправными. Если бы удалось сконцентрировать достаточное количество энергии, обеспечивающее достижение массы Планка, то полная размерность пространства проявилась бы во всем своем великолепии.
Дав свободу воображению, можно представить, что однажды человечество овладеет Суперсилой. Если бы это случилось, то мы обрели бы власть над природой, поскольку Суперсила в конечном счете порождает все взаимодействия и все физические объекты; в этом смысле она является первоосновой всего сущего. Овладев Суперсилой, мы смогли бы менять структуру пространства и времени, по-своему искривить пустоту и привести в порядок материю. Управляя Суперсилой, мы смогли бы по своему желанию создавать или превращать частицы, генерируя новые экзотические формы материи. Мы даже смогли бы манипулировать размерностью самого пространства, создавая причудливые искусственные миры с немыслимыми свойствами. Мы стали бы поистине властелинами Вселенной!
Но как этого достичь? Прежде всего необходимо добыть достаточное количество энергии. Чтобы представить, о чем идет речь, напомним, что линейный ускоритель в Станфорде длиной 3 км разгоняет электроны до энергий, эквивалентных 20 массам протона. Для достижения энергии Планка ускоритель потребовалось бы удлинить в 10^18 раз, сделав его размером с Млечный Путь (около ста тысяч световых лет). Подобный проект не из тех, что удастся осуществить в обозримом будущем.
В теории Великого объединения отчетливо различаются три пороговых значения, или масштаба, энергии. Прежде всего – это порог Вайнберга-Салама, эквивалентный почти 90 массам протона, выше которого электромагнитные и слабые взаимодействия сливаются в единое электрослабое. Второй масштаб, соответствующий 10^14 массам протона, характерен для Великого объединения, и основанной на нем новой физики. Наконец, предельный масштаб – масса Планка, – эквивалентный 10^19 массам протона, соответствует полному объединению всех взаимодействий, в результате чего мир поразительно упрощается. Одна из самых больших нерешенных проблем состоит в объяснении существования этих трех масштабов, а также причины столь сильного различия первого и второго из них.
Современная техника способна обеспечить достижение лишь первого масштаба. Как отмечалось в предыдущей главе, распад протона мог бы дать нам косвенное средство для изучения физического мира в масштабе Великого объединения, хотя в настоящее время, по-видимому, нет никаких надежд непосредственно достичь этот предел, не говоря уже о масштабе массы Планка.
Означает ли это, что мы никогда не сможем наблюдать проявлений изначальной суперсилы и невидимых семи измерений пространства. Используя такие технические средства, как сверхпроводящий суперколлайдер, мы быстро продвигаемся по шкале достижимых в земных условиях энергий. Однако создаваемая людьми техника отнюдь не исчерпывает всех возможностей – существует и сама природа. Вселенная представляет собой гигантскую естественную лабораторию, в которой 18 млрд. лет назад был «проведен» величайший эксперимент в области физики элементарных частиц. Мы называем этот эксперимент Большим взрывом. Как будет сказано далее, этого изначального события оказалось достаточно для высвобождения – хотя и на очень короткое мгновение – Суперсилы. Впрочем, этого, видимо, оказалось достаточно, чтобы призрачное существование Суперсилы навсегда оставило свой след.

Суперструны

Темпы современных исследований таковы, что с тех пор, как английское издание книги было направлено в печать, в развитии программы Великого объединения достигнуты дальнейшие успехи – создана так называемая теория суперструн.
При обычном подходе к построению модели мира предполагается, что все вещество состоит из частиц, а поиск фундаментальных частиц является главной целью физики высоких энергий. Как мы видели, даже поля, описывающие силы природы, получают интерпретацию с помощью частиц – переносчиков взаимодействия. Но теперь этому фундаментальному предположению брошен вызов. По-видимому, мир состоит не из частиц, а из струн.
Теория струн возникла в 60-е годы при попытках выяснить внутреннее строение адронов. Оказывается, что кварки, связанные друг с другом снующими внутри адронов глюонами, в некотором отношении ведут себя подобно нитям, или струнам. Теория сначала вызвала определенный интерес, однако не была вполне успешной. В частности, обнаружилось, что при определенных условиях струны двигались бы быстрее света, что абсолютно недопустимо. Развитие тематики, связанной со струнами, приостановилось, и большинство физиков обратились к другим проблемам, а теория поддерживалась главным образом усилиями Майкла Грина из Колледжа королевы Марии при Лондонском университете и Джона Шварца из Калифорнийского технологического института, США.
Затем в середине 70-х годов теория струн получила значительное развитие, которое в конечном счете привело к превращению заумной старой теории в нечто несравненно более мощное и элегантное. В это время теория элементарных частиц находилась под большим влиянием концепции суперсимметрии, и теоретики исследовали результаты перехода к суперсимметричным струнам. При этом выяснилось, что новые « суперструны » имеют огромные преимущества перед старыми струнами. Во-первых, из теории было исключено сверхсветовое движение. Во-вторых, в пределе низких энергий теория выглядела весьма обычной – очень напоминала супергравитацию . Стало складываться впечатление, что теория суперструн может оказаться значительно более широкой, нежели просто теория адронов. Затем в 1982 г. Грин и Шварц обнаружили, что суперсимметрия позволяет изгнать бесконечности в случае струн аналогично тому, как это делает теория частиц.
Бесконечности при высоких энергиях, вызывавшие столько беспокойства в теориях частиц и старой теории струн, в определенном классе теорий суперструн полностью исчезли.
Однако лишь в 1983 г. произошло то, что заставило физиков обратить серьезное внимание на теорию суперструн. Речь идет о замечательном математическом свойстве этой теории, которое казалось «слишком хорошим, чтобы быть верным». Один из недостатков физики квантовых частиц носит название проблемы аномалий. Под этим безобидным термином понимают появляющиеся в квантовой теории математические члены, которые согласно фундаментальным свойствам симметрии, присущим теории еще до квантования, должны быть равны нулю. Иными словами, придание теории квантового характера вызывает неожиданное появление в ней членов, которые «не имеют права» на существование. Эти члены нарушают последовательность теории и могут приводить к столь нежелательным последствиям, как нарушение законов сохранения энергии и электрического заряда. Поразительное свойство конкретного варианта теории суперструн, исследованной Грином и Шварцем, состоит в неожиданной перегруппировке математических членов, которая точно компенсирует и устраняет аномалии! По словам Майкла Грина, «происходит сокращение слагаемых, от которых ничего подобного нельзя было ожидать». Таким образом, теория удивительным образом освобождается от аномалий.
Устранения аномалий оказалось достаточно, чтобы привлечь к теории суперструн внимание других известных теоретиков; но это было лишь начало. Выяснилось, что сокращение происходит лишь в том случае, когда суперструны конструируются на основе очень частного вида калибровочной симметрии (она известна как группа SO (32), или E 8 x E 8 ). В отличие от теории частиц, где можно свободно выбирать среди многих конкурирующих видов калибровочной симметрии, в последовательной теории суперструн выбор разрешенной калибровочной группы почти однозначен. Обе допустимые группы включают уже известные – например группу SU (3), связанную со слабыми, сильными и электромагнитными силами. Этот факт указывает на сходство теории суперструн со стандартной физикой частиц в области низких энергий.
Последнее обстоятельство, сразу обеспечившее теории суперструн хорошую репутацию, заключается в том, что эту теорию. Следует формулировать в пространстве-времени с десятью измерениями. В прошлом считалось, что высокая размерность теории суперструн делает ее безнадежно нереалистической, однако по прошествии нескольких лет под влиянием теорий Калуцы-Клейна физики восприняли идею высокой размерности довольно спокойно. В конце концов с нежелательными высокими размерностями всегда можно справиться с помощью «компактификации».
Однако десятимерная теория имеет важное математическое преимущество по сравнению с одиннадцатимерной теорией Калуцы-Клейна. Как показал Эд Уиттен из Принстона, любая теория, формулируемая в пространстве нечетной размерности, обладает серьезным недостатком.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39