А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

1). Заметим, что сами точки на поверхности не движутся в направлении к чему-нибудь или от чего-нибудь. Раздвижение точек происходит вследствие расширения самой поверхности.

Рис.1. Расширяющаяся Вселенная похожа на раздувающийся шар. Точки, изображающие галактики, разбросаны по поверхности шара более или менее равномерно. Когда шар раздувается, расстояния между “галактиками” увеличиваются. Наблюдателю, находящемуся в любой из точек кажется, будто соседние точки удаляются, хотя в действительности они не движутся по поверхности: совокупность “галактик” вовсе не разбегается относительно какой-либо точки на поверхности. Разумеется, двумерная поверхность шара – не более, чем аналог трехмерного пространства. В реальной Вселенной не существует области, соответствующей областям внутри или снаружи оболочки шара.

Расширяющаяся Вселенная весьма напоминает трехмерный аналог раздувающегося воздушного шара, и неправильно представлять себе галактики мчащимися через пространство в разные стороны от общего центра расширения. В действительности пространство между галактиками, разрастаясь (вытягиваясь), раздвигает галактики относительно друг друга. Способность пространства вытягиваться следует из общей теории относительности Эйнштейна, которую мы постараемся объяснить в последующих главах. Тот факт, что мы видим, как далекие галактики разбегаются от нас, вовсе не означает, что мы находимся в центре расширяющейся Вселенной; с тем же успехом любую точку на поверхности раздувающегося воздушного шара можно принять за ее центр. (У самой поверхности шара нет центра.) Следовательно, Вселенная не расширяется куда-то, а просто вся увеличивается в размере.
Но если Вселенная раздувается, то в прошлом она должна была находиться в сжатом состоянии, и, экстраполируя назад во времени, мы приходим к заключению, что около 15 млрд. лет назад космическая материя должна была иметь необычайно высокую плотность. В этом суть теории Большого взрыва, согласно которой ныне наблюдаемая Вселенная возникла в результате гигантского взрыва.
По современной версии этой теории для ранних стадий Большого взрыва характерны необычайно высокие температура и плотность; при таких условиях ни один из современных элементов строения Вселенной, включая атомы, не мог существовать. Важное подтверждение такого сценария было получено в 1965 г., когда два специалиста по дальней связи из фирмы “Белл телефон лабораторис” обнаружили таинственное излучение, идущее из космического пространства. Физики и астрономы быстро идентифицировали это космическое фоновое излучение как реликтовое тепловое излучение Большого взрыва, своего рода отблески тон огненной вспышки, которая 15 млрд. лет назад ознаменовала рождение нашего мира.
Процесс Большого взрыва часто неверно трактуется наподобие взрыва глыбы вещества в уже существовавшем вакууме. Но, как известно, пространства вне Вселенной не существует. Большой взрыв следует рассматривать как событие, в результате которого возникло и само пространство. Таким образом, научная картина “сотворения мира” оказывается глубже библейской, ибо она отражает рождение не только материи, но и пространства. Последнее возникает не каким-то иным путем, а непосредственно в результате Большого взрыва. Следовательно, Большой взрыв не есть событие, которое произошло во Вселенной; это было само рождение Вселенной, целиком и буквально из ничего.
Другая важная особенность Большого взрыва связана с временем. Многие космологи считают, что время до Большого взрыва не существовало, т.е. не было никакого “прежде”. Один из уроков новой физики состоит в том, что пространство и время существуют не сами по себе, а составляют неотъемлемую часть физического мира. Следовательно, если Большой взрыв ознаменовал рождение физического мира, то пространство и время возникли только в момент Большого взрыва. Идея отождествления момента рождения Вселенной с началом времени далеко не нова. Еще в IV в. Святой Августин писал: “Мир сотворен с временем, но не во времени”.
Внезапное возникновение Вселенной в результате Большого взрыва означает, что вопрос “Где мы находимся–во времени"? имеет смысл. Исчисления всех космических эпох можно вести от этого уникального всеопределяющего события, которое произошло около 15 млрд. лет назад. Историю Вселенной можно разделить на зоны, ведя отсчет от этого абсолютного нуля времени.
Из чего мы состоим?
На этот вопрос ответить просто: из материи. Но что такое материя и как она возникла? Диапазон форм, красок, плотностей и текстуры материальных тел столь широк, что попытка понять природу материи может показаться безнадежной задачей. Однако еще две с половиной тысячи лет назад греческие философы заложили основы нашего понимания природы материи, когда попытались свести разнообразие окружающего мира к взаимодействию небольшого числа первичных составных частей – элементов. В VI в. до н. э. Фалес считал первоосновой всех вещей один первичный элемент"– воду, но позднее мыслители ввели в рассмотрение четыре земных элемента: землю, воздух, огонь и воду. По мысли древних, эти элементы в целом сохраняются – их общее количество остается неизменным, – но могут образовывать друг с другом различные комбинации, необычайно разнообразные по форме и составу. Небесным телам отводилась пятая субстанция, называемая эфиром, или квинтэссенцией. Греческие философы сделали важный шаг, отвергнув ссылки на потусторонние силы и наблюдение – основу научного метода. Анаксагор (500–428 г.г. до н.э.) существенно усовершенствовал более ранние теории, введя представление о бесконечной Вселенной, заполненной бесконечным множеством частиц, или “атомов”. Кроме того, Анаксагор высказал предположение, что небесные тела состоят из таких же веществ, что и Земля, – эта “ересь” едва не стоила ему жизни. Левкипп внес свою лепту в развитие атомной теории материи, это дело продолжил его ученик Демокрит. Впоследствии атомистическая теория была отвергнута такими великими философами, как Аристотель, Платон и Сократ. Однако позднее идеи атомистов были подхвачены Эпикуром,) (341–270 гг. до н.э.).
Главная особенность учения атомизма заключалась в следующем: мир состоит всего лишь из двух вещей – неуничтожимых атомов и пустоты. Атомы имеют различную форму и могут соединяться между собой, образуя сложные системы. Атомы неделимы и свободно движутся в пустоте. Они непрестанно находятся в состоянии активности, сталкиваясь и объединяясь в новые конфигурации и неизменно подчиняясь рациональным законам причины и следствия.
На протяжении столетий атомная теория материи имела чисто умозрительный характер, ибо атомы слишком малы, чтобы их наблюдать непосредственно. Альтернативные представления о континууме, согласно которым материя бесконечно делима и не содержит пустоты, существовали вплоть до XIX в. С развитием химии как науки атомистическая теория подверглась пересмотру в рамках современного научного мышления. Английский химик Джон Дальтон (1766–1844) привел свидетельства в пользу того, что атомы имеют различные веса и, комбинируясь в определенных пропорциях, образуют соединения; однако прямые физические доказательства существования атомов по-прежнему отсутствовали. Лишь в конце XIX в. с открытием электрона и радиоактивности существование атомов стало, наконец, общепризнанным. Вскоре выяснилось, что имеется множество различных типов атомов (каждый такой тип на современном языке соответствует химическому элементу). Ныне на Земле обнаружено около 90 естественных химических элементов и более десятка элементов синтезировано искусственным путем.

Рис. 2. Схематическое изображение атома. Центральное ядро имеет вид шара, состоящего из сильно связанных протонов и нейтронов и окруженного облаком обращающихся вокруг него электронов. Почти вся масса атома сосредоточена в ядре. Из-за квантовых эффектов орбиты электронов на самом деле не соответствуют четко определенным траекториям, показанным на рисунке.

В 1909 г. Эрнест Резерфорд выяснил основные особенности строения атома. Бомбардируя атомы альфа-частицами, испускаемыми радиоактивным источником, Резерфорд установил по характеру рассеяния альфа-частиц, что атомы представляют собой не твердые кусочки неделимой материи, как полагали некоторые физики, а сложные структуры, основная масса которых сосредоточена в центральном ядре, окруженном облаком более легких подвижных электронов (рис. 2). Такая структура напоминает планетную систему. Электроны удерживаются на орбитах силой притяжения (положительно) заряженного ядра.
Строение ядра оставалось неясным до начала 30-х годов. Ядро, как оказалось, также является сложной системой, состоящей из (положительно заряженных) протонов и электрически нейтральных частиц – нейтронов. Согласно современной точке зрения, протоны и нейтроны в свою очередь состоят из еще более мелких частиц – кварков. Многие физики полагают, что электроны и кварки являются подлинно элементарными частицами, – в том смысле, как это понимали древние греки. Они, по-видимому, не обладают внутренней структурой, и из них построены все известные формы обычной материи.
Очевидно, что материя имеет иерархическую структуру. Из кварков состоят протоны и нейтроны, которые в свою очередь формируют ядра атомов. Атомы комбинируются в молекулы или кристаллы. Из этих основных “материалов” состоят твердые тела, окружающие нас. Двигаясь вверх по шкале масштабов, мы придем к планетным системам, звездным скоплениям и, наконец, к галактикам, но даже галактики объединяются в скопления и сверхгалактики. Люди находятся где-то в середине этой иерархии: наши размеры соотносятся с размерами атомов примерно гак же, как размеры звезд с нашими собственными.
Известно, что одни химические элементы, например кислород и железо, имеются на Земле в изобилии, тогда как такие, как уран и золото, встречаются столь редко, что люди нередко развязывают войны, чтобы обеспечить доступ к их месторождениям. Если оценить распространенность химических элементов в целом по Вселенной, то возникнет поразительная– картина. Около 90% космического вещества приходится на долю водорода – самого легкого и простого элемента. Атом водорода состоит из одного протона и одного электрона. Подавляющую часть остальных 10% составляет гелий– простейший после водорода элемент. Ядро гелия содержит два протона и два нейтрона. Доля всех остальных элементов вместе взятых не превышает <1%. Если исключить железо, то вырисовывается следующая общая тенденция: более тяжелые элементы – такие, как золото, свинец и уран – распространены во Вселенной значительно в меньшей степени, чем более легкие: углерод, азот, кислород.
Подобная распространенность элементов весьма примечательна. Тяжелые ядра содержат большое количество протонов, и нейтронов, легкие – мало. Если бы легкие ядра могли вступать друг с другом в реакцию ядерного синтеза, то это привело бы к образованию более тяжелых ядер. Напрашивается мысль, что во Вселенной первоначально присутствовал только один простейший элемент–водород.), а более тяжелые элементы постепенно образовались на последующих стадиях ядерного синтеза. Подобная теория сразу объясняет, почему тяжелые ядра столь редки. Реакции ядерного синтеза могут протекать только при температурах, при которых преодолимо отталкивание электрически заряженных ядер. Чем больше протонов в ядре, тем сильнее отталкивание между ядрами и тем с большим трудом ядро принимает дополнительные протоны в реакции ядерного синтеза.
Понимание процесса образования химических элементов лишь отчасти объясняет “тайну” образования материи. Остается не ясным, как же образовались протоны, нейтроны и электроны, из которых состоят атомы химических элементов.
Ученым давно известно, что вещество не вечно – оно возникает и исчезает. При концентрации достаточного количества энергии происходит рождение новых частиц вещества. Мы можем рассматривать вещество как “запертую” энергию. Возможность превращения энергии в вещество наводит на мысль, что во Вселенной первоначально не было вещества и все вещество, которое мы наблюдаем сейчас, возникло из энергии Большого взрыва. Эта привлекательная теория сталкивается, однако, с серьезным затруднением. Рождение частиц вещества в лаборатории (на ускорителях) стало обыденным явлением, но образование каждой новой частицы сопровождается образованием ее “антипода” – античастицы. Например, электрон (имеющий отрицательный электрический заряд) всегда рождается в паре с антиэлектроном, который называют позитроном. Последний имеет такую же массу, как электрон, но противоположный (положительный) электрический заряд. Аналогично рождение каждого протона сопровождается рождением антипротона. В целом античастицы принято называть антивеществом.
При столкновении частицы с античастицей происходит их аннигиляция, при этом высвобождается заключенная в них энергия. Ясно, что смесь вещества и антивещества крайне неустойчива. Поэтому маловероятно, чтобы какая-нибудь, если только не самая крохотная, область Вселенной целиком состояла из антивещества. Тогда встает вопрос: каким образом возникло вещество без эквивалентного количества антивещества? Как мы узнаем в дальнейшем, последние открытия дают ключ к решению этой проблемы.
Рождение вещества из энергии не ограничивается такими общеизвестными частицами, как электрон, протон и нейтрон. Возможно образование и других, более экзотических, форм материи. На ускорителях при столкновении частиц высоких энергий рождаются сотни различных субатомных частиц. Все они нестабильны и быстро распадаются, превращаясь в более привычные виды частицы. Образующиеся при таких столкновениях частицы настолько короткоживущи, что не играют непосредственной роли во Вселенной.
Почему мы не разваливаемся на части?
Если бы не взаимодействия, то частицы материи двигались бы независимо, "не подозревая" о существовании других частиц. Благодаря взаимодействиям частицы как бы обретают способность распознавать другие частицы и реагировать на них, в результате чего рождается коллективное поведение.
Когда инженер рассуждает о силах, он обычно имеет в виду способность толкать или тянуть, представляя при этом веревку или проволоку. Силы такого рода мы вполне можем представить наглядно и, опираясь на собственный опыт, понять, как под их воздействием могут перемещаться предметы. Но существуют и другие, менее привычные проявления сил, например, радиоактивный распад атомного ядра или взрыв звезды. Поскольку вся материя состоит из частиц, для объяснения природы сил, или взаимодействий, необходимо в конечном счете обратиться к физике элементарных частиц. Сделав это, физики обнаружили, что все взаимодействия независимо от того, как они проявляются в больших масштабах, можно свести к четырем фундаментальным типам: гравитационному, электромагнитному и дум типам ядерных. В последующих главах мы узнаем, каким образом происходят эти взаимодействия между частицами. Мы увидим, что взаимодействия и частицы тесно связаны между собой, и понять природу одних без должного понимания природы других просто невозможно.
С увеличением масштаба относительное значение каждого из четырех взаимодействий меняется. На уровне кварков и атомных ядер доминируют два ядерных взаимодействия. Сильное ядерное взаимодействие связывает кварки в протоны и нейтроны и не позволяет атомным ядрам “разваливаться”. На уровне атомов преобладает электромагнитное взаимодействие, связывающее электроны с ядрами и обеспечивающее объединение атомов в молекулы. Большая часть сил, с которыми мы имеем дело в нашей повседневной жизни (натяжение проволоки, толчок, испытываемый одним телом со стороны другого и т.д.) – это примеры макроскопического проявления электромагнитного взаимодействия. В астрономических масштабах господствующим становится гравитационное взаимодействие. Таким образом, каждое взаимодействие вступает в свои права, начиная с определенного масштаба, и играет важную роль в формировании характерных особенностей физического мира.
В последние годы физики заинтересовались соотношением между четырьмя фундаментальными взаимодействиями, которые в совокупности управляют Вселенной. Существует ли между ними какая-нибудь связь? Не являются ли эти четыре фундаментальных взаимодействия всего лишь различными ипостасями единственной основополагающей суперсилы? Если такая суперсила существует, то именно она представляет собой действующее начало всякой активности во Вселенной – от рождения субатомных частиц до коллапса звезд.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39