А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

И оказалось, что по мере нарастания соленостей от пресной воды в сторону моря количество видов постепенно падает, падает, падает, достигает минимума, который он назвал Artenminimum или зона минимума видов, и начинает подниматься, подниматься, подниматься.
Вот эта ямка минимума видов приходится на солёность около 5-8 промилле. Это узкий соленостный диапазон по сравнению с тем огромным диапазоном, в котором существует жизнь. И оказалось, что эта ямка определена не просто числом видов, но и качественно. До 5 промилле в сторону моря доходит минимум пресноводных видов. Большая часть их не переходит за эти пределы. А со стороны моря в сторону пресных вод не заходят типично морские виды.
В Балтике, в Эстонии, есть удивительно характерные места, куда возил меня мой друг Арве Ярвекюльг. Есть заповедник Маацулу, и там есть залив с плавным градиентом солёности. И известно, что до того-то дуба, который виден вдали, до него доходит морской червь такой-то. Дальше причал, который виден с одной точки, до этого места доходят мидии, и дальше они уже не пойдут. А вот у этой мельницы - последние морские звёзды. Это всё около 5-8 промилле, и это всё постулировалось для Балтики. И ограничивалось морской солёностью, около 20-30 промилле, потому что в Балтике больших соленостей нет. Я предпринял очень большую, трудоёмкую работу по анализу литературы. Это каждый раз были частные заключения, которые мне удалось обобщить. Оказалось, что вообще во всех морях с плавным градиентом соленостей именно солёность 5-8 промилле делит два главных типа морской фауны: пресноводную и морскую. С этой идеей долго не соглашались московские академики, например, Лев Александрович Зенкевич, и мои статьи были арестованы. Потом в нашу страну, мы принимали его на Белом море, приехал замечательный морской биолог Отто Кинне из Германии. И когда я ему всё рассказал, показал соответствующие графики, он сказал - где это можно прочитать? Я говорю - нигде. Почему? Я говорю - потому что мои оппоненты сказали, что до этого сам Кинне не додумался. И после этого мои статьи публиковались в Германии со страшной скоростью, от посылки статьи до публикации проходило 2 недели, и оппоненты растворились, как сахар…
Александр Гордон : Как соль в воде.
В.Х. Как сахар в кофе. Кинне потом предложил называть эту зону, разделяющую продвижение морских в сторону пресных и пресных в сторону морских - хорохалинной зоной. По-гречески «хоре» - разделяю. То есть, она разделяет отдельные фауны.
Но ведь есть, и вы прекрасно это знаете, много форм, которые легко проходят эту зону. Лосось живёт в открытом море, а на размножение идёт в пресную воду, молодь тоже идёт из пресной воды в море. Наверное, ей надо будет адаптироваться некоторое время в промежуточном состоянии. Я даже такой термин придумал, пока ещё не опубликованный, «физиологическое шлюзование». Это действительно постепенное шлюзование. Сейчас вызывает тревогу продвижение китайского краба, который живёт уже в пресных реках. В Чехословакии он живёт даже в Праге. Но и тем и другим нужно обязательно вернуться в родную среду, чтобы размножаться. Китайскому крабу обязательно для этого нужна солёность выше 7 промилле, а лосось никогда не размножается при солёности выше 7 промилле, это оказывается пределом размножения.
Есть ещё и другие физиологические показатели, например, интенсивность дыхания, которые показывают, что те, которые легко проходят из зоны в зону, у них здесь меняется обмен, и 5-8 промилле оказываются пределом каких-то функций. Естественно, я задумался о причине происходящего. И тут опять мне помогло знакомство с немецкой литературой.
В 40-м году немецкий гидрохимик Виттиг заинтересовался таким вопросом: как меняется ионный состав в этом градиенте солёности? А надо сказать, что и морские, и пресные воды чрезвычайно резко различаются, принципиально. Каждая река имеет свой состав солей. Этот состав солей может меняться по сезонам, в зависимости от водности, по годам, безусловно, по районам, по регионам, в зависимости оттого, что дренируется в реки.
А в море господствует правило Кнудсена. Правило, говорящее о том, что соотношение ионов в морской воде необычайно жёстко определено. То есть, если мы уясним концентрацию какого-то одного иона, мы точно можем сказать, сколько других ионов здесь сохраняется. И наш великий человек Владимир Иванович Вернадский даже предложил считать постоянство ионов морской воды константой планеты Земля. Именно константой планеты Земля, потому что по его прикидкам, это соотношение ионов сохраняется на Земле, по крайней мере, миллиард лет. И это даёт возможность определять солёность по хлору. Он легко титруется, и потом хлор - 55% суммы всех ионов морской воды.
Так вот, получается так, что градиент - это смешение морской воды с пресной, смешение величайшего гидрохимического разнообразия с константой. Вопрос стоит так - где меняется правило Кнудсена? И вот об этом-то как раз и сказал анализ табличных данных Виттига, который определял отношение самого пресноводного иона кальция к самому морскому, который несёт константу хлору на расстояние от середины Норвежского моря через Осло… То есть, бралась конкретная станция, конкретная проба на расстоянии около полутора тысяч километров до Балтики в устье рек. И там был цифровой материал. Когда этот цифровой материал я перевёл в график, график оказался необычайно показательным. Оказалось, что от 35 океанической солёности вплоть до 7-8 промилле линия идёт горизонтально к оси абсцисс. И дальше резко ломается и поднимается соответственно разбавлению.
А.Г. Тот же самый барьер, да?
В.Х. Тот же самый барьер - гидрохимический уже барьер, не биологический, падающий на эти зоны. Дальше оказалось, что даже растворы чистого хлористого натрия в эксперименте ведут себя так же. А хлористый натрий - это 85% ионного состава морской воды. И, наконец, ряд других косвенных данных говорил о том, что здесь меняются физико-химические характеристики воды. В частности, реки несут огромное количество глинистых частиц: перлит, каолинит, и прочее. А в американском журнале «Клей», «Глина» я вычитал, что оказывается, почти вся глина быстро флоккулирует и оседает при солёности около 5 единиц. Конечно же, это граница слегка размазана.
И, наконец, ещё один показатель. Сейчас физическими методами определяют воду по электропроводности. И просто практика показывает, что определять воду солёностью меньше 6-7 промилле по электропроводности нельзя. Дальше шумы забивают точность прибора. То есть, это предел работы физического метода определения солёности. Вот так обстоит дело с внешней средой. Это величайший экологический фактор.
Должен сказать, что есть и более высокие границы. Например, при 42 промилле, а это что-то близкое Аральским значениям, уже меняется валентность железа. Некоторые гидрохимические показатели, это в своё время показал грек Хацкакидис, меняются при солёности выше 42 промилле. Ну, и наконец, уже при самых высоких значениях - это и Куяльник и Мёртвое море - пересоленные воды заселены такими видами животных и растений (это парадокс), которые явно не морского, а пресноводного происхождения. Там другое качество: видимо, есть механизм адаптации к пресной воде, и легче переключить эти выработанные в пресной воде механизмы на работу в противоположном направлении, чем выработать из морских новые. Вот такое общее соображение.
А дальше - я вернусь к потрясению школьника. 14-летним мальчиком я попал на берег Финского залива и первым делом попробовал воду. Она действительно оказалась солёная. Эта банальность, известная всем, но мне она показалась очень похожей по вкусу на кровь. Все мы в своё время резали пальцы и высасывали кровь. Величина солёности нашей крови, если её выразить не в физиологических и медицинских терминах, а в привычных для нас единицах промилле… Солёность воды на берегу Рижского залива в Балтике примерно 6-7 промилле. Это близко к солёности нашей крови. Случайно это или нет?
Просто уверен, что не случайно, и вместо цитирования научных данных, я просто скажу, что в Ленинграде был накоплен запас так называемой эталонной морской воды, той самой - 34,5, которой кафедра снабжала океанографические учреждения. Так вот эта морская вода разбавлялась до солёности около 10 промилле и использовалась во время блокады, как кровезаменитель в госпиталях. А на Западе эта отфильтрованная морская вода, соответствующим образом разбавленная, во Второй мировой войне широко использовалась под названием раствор Квинтона. И наконец, те растворы, в которых мы сохраняем органы - раствор Рингера (он бывает человечий, лягушачий), он тоже по соотношению ионов очень близок морской воде. И поэтому можно говорить о внутренней солёности.
Это я вычитал, но мне удалось из вычитанного построить собственную конструкцию. Потому что то, что я вычитал, я представляю себе, как только одну жердь чума. Даже если одна она упадёт, то другие жерди - гидрохимическая, физиологическая, экологическая - вместе создают эту жёсткую конструкцию внутренней критической солёности.
Я обнаружил правило, которое я предложил назвать правилом Бидля: при продвижении от моря в пресные воды, нет животных, внутренняя солёность которых была бы меньше 5 промилле. Сейчас найдены исключения, некоторые доходят до 3 промилле. Но в целом в пресной воде должны быть выработаны механизмы накачивания солей, и солей в том самом качестве, как в пресной воде.
Физиологи не любят выражать в промилле концентрацию солей, но у лягушки это около 8 промилле, кровь человека и прочих млекопитающих - это между 9 и 10 промилле. Рекордсмен здесь, пожалуй, речной рак, у него этот показатель доходит до 15 промилле. Но обратите внимание: если речного рака бросить в дистиллированную воду, где он теряет соли и не может их получить, то он очень быстро с 15 дойдёт до 8, и будет…
А.Г. И останется жив.
В.Х. И останется жив. И будет изо всех сил долго держать около 8 и только как только снизится ниже - погибнет. То есть, смысл нашей внутренней солёности - обеспечение наших клеток и тканей условиями жизни, захваченными из моря.
А.Г. У млекопитающих это уже атавизм, по сути дела.
В.Х. Это атавизм, у млекопитающих это атавизм со времён рыб и рептилий, которые выходили в пресные воды и на сушу. В пресные воды они могли выйти, только создав механизм внутренней солёности. При этом работают так называемые осморегуляторные структуры.
Вот проблема, там, где миллиграммы солей, в этих низко минерализованных водах живут молодые лососята, здесь живёт колюшка, такая рыбка, которая очень легко переносит транспортировку с моря в пресные воды. Она живёт в среде, из которой она должна захватывать своими клетками (для этого работают специальные клетки жаберного аппарата) необычайно дефицитные ионы и вгонять их в кровь. И кровь у неё солёная, тоже около 9-10 промилле. А дальше второй механизм: когда образуется моча, необходимо выделять жидкости, при этом почки захватывают дефицитные ионы и забирают их назад.
Рыбы, даже морские, как теперь принято считать, совершенно определённо - пресноводного происхождения. Поэтому в море с её солёностью 30 с лишним промилле рыбы имеют внутреннюю солёность не больше 12-15. Видимо, то, что выработалось в пресной воде, оказалось оптимальным. Эта внутренняя солёность, наверное, оптимальна для тонкого регулирования некоторых процессов.
А.Г. Означает ли это, что вся жизнь вышла из пресных вод, раз рыбы, которые обитают сегодня в океане, имеют пресноводных предков?
В.Х. Они вторично морские. Они проникли в пресные воды благодаря этому аппарату гиперосмотической регуляции, захвату ионов и удержанию высокой солёности и, привыкнув к этой величине, они, даже выйдя в море, сохранили ту самую внутреннюю солёность.
А.Г. А можно предположить, какой солёности было море, из которого вышли первые амфибии?
В.Х. Вот тут, тут как говорится, учёные спорят. С одной стороны есть мнение, что солёность моря - та самая константа Вернадского - существует около миллиарда лет. А жизнь в пресные воды вышла значительно позже. И в то же время в море присутствует величайшее разнообразие классов и типов. Ведь в пресные воды до сих пор - за эти два миллиарда лет существования жизни - не вышли ни одного коралла, ни одной актинии, ни одного головоногого моллюска, ни одной асцидии (а это целый тип), ни одной погонофоры. То есть, в своём продвижении от великого разнообразия моря в сторону пресной воды только избранные перешагнули этот барьер. Но, перешагнув его, они отработали, наверное, оптимальные способы регулирования процессов во внутренней среде. И поэтому, возвращаясь назад, они сохранили тот же уровень. Кстати, не только рыбы, очевидно, сохранили низкую солёность, но и некоторые креветки.
А.Г. А как обстоит дело у дельфинов с солёностью крови?
В.Х. У дельфинов абсолютно, как у нас.
А.Г. То есть, 10 промилле…
В.Х. Это 10 промилле, прекрасно работают почки. У них другая проблема. У тех, кто живёт в море, у тех, которые вернулись, у них проблема удаления избыточной соли. Та же колюшка, которая захватывает в пресной воде соли, их удерживает, попадая в море. А в море она должна решать другую задачу - иметь биологический опреснитель. И механизм заключается в том, что колюшка в море пьёт непрерывно воду, чего она не делает в пресной воде, и её жабры выбрасывают излишки солей - в первую очередь жабры - отдельные ионы магния и почками могут выбрасываться, а излишний натрий выбрасывается жабрами, специальными клетками, через которые протекает кровь, несущая все это.
В.Ф. Владислав Вильгельмович, к вам просьба расшифровать ещё один момент, который касается ваших исследований. А каков же механизм? Почему 5-7, почему не остановились на 9? Как это связано с биохимией? Здесь есть следующий уровень рассмотрения. Вы же понимаете, что должно быть объяснение, откуда те сакраментальные 5-7? Что за этим стоит? Регулятор биохимический? Либо экологический? Что, почему? Это от Бога или от какого-то эволюционного тормоза?
В.Х. Я попробовал уже объяснять, что формирование, во всяком случае, критического значения этих соленостей в экологии - это, скорее всего, изменение физико-химических свойств среды. Наверное, и в организме тоже - ниже этих же самых пределов та самая среда меняется очень невыгодно. Например, есть опыты академика Трошина, когда он разбавлял кровь лошади дистиллированной водой, и при перевале за 5-7 промилле эритроциты лопались. Нарушаются мембраны, нарушаются, наверное, биохимические процессы. Если мы представим себе наши белки, макромолекулы в виде полиионов, то есть в виде огромных глобулов молекул, которые сохраняют нативные свойства, благодаря неорганическим противоионам, так, наверное, и здесь играет роль внутренняя солёность, которая обеспечивает насыщение противоионов. Отсюда, наверное, и коагуляция белков…
В.Ф. Разные конформационные переходы на уровне макромолекул. Можно их свернуть, можно сделать так, что они начнут в клубки сворачиваться. Можно наоборот насытить, они будут растопыриваться. То есть, это регуляторный механизм биохимической активности макромолекул различной химической природы, на которых зиждется вся наша биохимия - это белки, это могут быть полисахариды, это полимеры, прежде всего. Переход одной конформации в другую… Первичная структура, которая задана последовательностью образующих эту цепь оснований. Вторичная структура - спирализация. Третичная структура - укладка этих спирализованных участков - всё это подчиняется и регулируется этим изменением состояния.
В.Х. Именно поэтому, наверное, и нормальная наша внутренняя солёность близка к критической.
В.Ф. Совершенно верно.
В.Х. Потому что благодаря минимальным изменениям в работе почек, ионорегулирующим механизмам можно каким-то образом влиять на конформацию макромолекул…
В.Ф. …и, стало быть, на всю биохимию наших жизненных процессов, будем так говорить.
В.Х. Поэтому-то мы и сохраняем всё это, выйдя в море.
Я хотел бы обратить внимание, если позволите, на ещё один интересный момент. Внутренняя среда изучается физиологией. Внешняя среда - экологией, которую мы с Вадимом Дмитриевичем в большей степени представляем здесь, чем физиологию. Но внутренняя среда изучается разными ведомствами. Они редко контактируют друг с другом. Наверное, это нехорошо, наверное, надо чаще обмениваться своими открытиями.
Физиология движется и медицинскими потребностями. Поэтому отсюда интерес к крови, к работе почек. Это же функционирование наших органов. И мне кажется, что иногда физиология может дать кое-что интересное и для экологии. В частности, в экологии много лет обсуждался вопрос: могут ли животные поглощать растворённое органическое вещество внекишечно? То есть через покровы.
Спор шёл чуть ли не столетия.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28