А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Впервые это удалось сделать в США сотрудникам Армаденской лаборатории 1MB под руководством Д. Эйглера, которые сумели выложить на поверхности монокристалла никеля название своей фирмы из 35 атомов ксенона. Это стало своеобразным рекордом в методах миниатюризации записи «текста». Позднее, в 1991 г., из этого выросла методика перемещения атомов ксенона вверх-вниз (относительно поверхности монокристалла), названная атомным переключением (atomic switch). В целом описанная техника создает много возможностей как для манипуляций на уровне отдельных атомов, так и для изучения их структур и поведения.
Японские фирмы и научные организации в свою очередь начали энергично развивать методики в области микроскопии, в результате чего за короткое время были созданы новые типы сканирующих туннельных микроскопов, а также электронных микроскопов с очень высоким разрешением (разрешением оптического прибора физики называют размер наименьшей детали, которую можно выделить на получаемом изображении), позволяющих исследовать движение отдельных атомов и молекул. Это привело к энергичному развитию экспериментальной техники в нанометровом диапазоне и значительно расширило представления ученых о микромире и нанообъектах.
В 1990 г. началась реализация огромного международного проекта по определению последовательности укладки около 3 млрд нуклеотидных остатков в записи генетической информации – проекта «Геном человека», ставшего ярким прорывом в биологии и медицине. Этот проект одновременно является исключительно важным для развития нанотехнологий, поскольку открывает новые огромные возможности в информационных технологиях, позволяя понять, а затем и использовать принципы обработки информации в живой природе (биоинформатика). В 1991 г. в Японии начала осуществляться первая государственная программа по развитию техники манипулирования атомами и молекулами (проект «Атомная технология»), которая привлекла внимание исследователей во многих странах мира. Это ознаменовало новый этап в развитии нанонауки и нанотехнологий: государство стало поддерживать направление, признав его приоритетность не только для национальной науки, но и для государства в целом.
В настоящее время нанотехнологии все больше и больше входят в нашу жизнь. Нанотехнологический контроль изделий и материалов, буквально на уровне атомов, в некоторых областях промышленности стал обыденным делом. Реальный пример – DVD-диски, производство которых было бы невозможно без нанотехнологического контроля матриц. Очень популярны в промышленных устройствах очистки питьевой воды и получении сверхчистой воды так называемые нанофильтрационные мембранные фильтры, позволяющие задерживать частицы молекулярного размера. Стали реальностью квантовые точки в технологии получения полупроводников, которые эффективнее известных в 1000 раз. Этот список можно продолжить:
¦ «нанотрубки» и «нанонити» («нановолокна»), состоящие из 6070 молекул, как новое состояние поверхности вещества и создание сверхлегких материалов;
¦ нанозеркало для лазеров со сверхвысокой отражающей способностью;
¦ атомная игла – сверхтонкая игла, сужающаяся на острие едва ли не до единственного атома, которая как атомный щуп изучает рельеф поверхности на молекулярном уровне;
¦ нанороботы-манипуляторы, создающие разные типы поверхностей путем переноса отдельных молекул;
¦ наногенераторы электрического заряда внутри человеческого организма для электропитания имплантатов;
¦ сверхскоростной нано-Интернет с потенциалом увеличения скорости в сотни раз;
¦ диагностика качества пищевых продуктов с помощью наносенсоров (квантовых точек) для выявления опасных химических или биологических загрязнителей пищевых продуктов;
¦ наногранулы, которые внутри человеческого тела доставляют молекулу лекарственного препарата не просто к органу-мишени, но прямо к рецептору, который, по сути, также является молекулой и отвечает за реализацию физиологического эффекта;
¦ нанокод, то есть молекулы антител, иммобилизованные на поверхности нанонитей для идентификации антигенов (то есть чужеродных веществ) по иммунной реакции;
¦ наночастицы косметического крема, проходящие через мембраны клеток кожи, для настоящего клеточного питания дермы – и это далеко не полный перечень использования нанотехнологий в мире XXI в.
Что-то из вышеперечисленного уже становится реальностью «на глазах», поскольку скорость технического прогресса в современном мире огромна; что-то еще находится в стадии доработки. Важно, что уже сейчас все это работает и приносит огромную пользу.
А потенциальные возможности нанотехнологий поистине не знают границ. Xотелось бы особо подчеркнуть, что мы пока не можем, конечно, оценить и представить себе масштабы развития и возможности применения нанотехнологий в целом, но количество научных исследований и затраты на них будут расти с каждым годом, учитывая перспективность тематики. Исследования в данном направлении все время расширяются. В 2004 г. человечество истратило на нанотехнологии $ 8,6 млрд. Причем больше половины – $ 4,6 млрд – это расходы правительственных организаций разных стран.
В связи с этим необходимо отметить государственное участие в проектах по нанотехнологиям. Япония и США начиная с 90-х гг. XX в. тратят на государственную поддержку нанопроектов миллиарды долларов; существует Объединенный комитет Евросоюза по нанотехнологиям, который также с этого времени активно финансирует развитие нанотехнологий как одно из самых приоритетных направлений. Не остается в стороне и Россия, которая вступила в борьбу за мировое лидерство в области развития нанотехнологий. Некоторое запоздание России в области развития нанотехнологий имеет исторические причины. То, что отставание в этой области может повлечь неконкурентоспособность России в различных областях техники и промышленности, в которых растет удельный вес нанотехнологий, и, как следствие, отставание в экономическом развитии в целом, понимают в России на высшем государственном уровне.
Ниже приводится выдержка из выступления президента Российской Федерации В. В. Путина перед Федеральным собранием 26 апреля 2007 г.:
Переднами стоит задача формирования научно-технологического потенциала, адекватного современным вызовам мирового технологического развития. И в этой связи хочу особо подчеркнуть необходимость создания эффективной системы исследований и разработок в области нанотехнологий, основанных на атомном и молекулярном конструировании.
Сегодня для большинства людей «нанотехнологии» – это такая же абстракция, как и ядерные технологии в 30-е гг. прошлого века. Однако нанотехнологии уже становятся ключевым направлением развития современной промышленности и науки. На их основе, в долгосрочной перспективе, мы в состоянии обеспечить повышение качества жизни наших людей, национальную безопасность и поддержание высоких темпов экономического роста. Оценки ученых говорят о том, что изделия с применением нанотехнологий войдут в жизнь каждого – без преувеличения – человека, позволят сэкономить невозобновляемые природные ресурсы.
Учитывая масштабность и уникальность российского проекта по нанотехнологиям, президент призвал страны СНГ принять участие в этом объединяющем взаимовыгодном и направленном в будущее деле. Придание проекту статуса международного повысит интерес к этому проекту и будет способствовать распространению достоверной и позитивной информации об этом очень непростом для понимания, но чрезвычайно перспективном направлении развития не только отечественной науки, но и человечества в целом.
Особые задачи стоят перед педагогами российских школ и высших учебных заведений. Настала необходимость для разработки новых программ по курсу концепций современного естествознания, включающих нанонауку и нанотехнологии как неотъемлемое междисциплинарное направление современного естествознания; в этих программах особенное внимание следует уделить углубленному изучению проблем микромира, с тем чтобы достижения нанотехнологий были понятны специалистам гуманитарного профиля.
В заключение этой главы приведем «наноцитату».
«Следующая промышленная революция» – данная фраза была отпечатана на поверхности, площадь которой меньше площади сечения человеческого волоса, буквами шириной 50 нанометров.
Вопросы для самопроверки
1. Что означает приставка «нано» к терминам: технологии, мембраны, транзисторы, сенсоры, зеркала и т. д.?
2. Только ли с изменением линейных размеров связан переходот микротехнологий к нанотехнологиям? Какие качественные изменения он предполагает? Обоснуйте ответ.
3. Приведите примеры использования нанотехнологий в современной жизни.
4. Является ли развитие нанотехнологий делом ученых-одиночек или небольших отраслевых лабораторий? Расскажите о масштабе программы «Развитие нанотехнологий».
Глава 6 МЕГАМИР И ЕГО СВОЙСТВА
6.1. Общие представления о Вселенной
Космос (от греч. hosmos – мир) – термин, идущий из древнегреческой философии для обозначения мира как структурно организованного и упорядоченного целого. Космосом греки называли Мир упорядоченный, прекрасный в своей гармонии в отличие от Хаоса – первозданной сумятицы. Сейчас подкосмосом понимают все находящееся за пределами атмосферы Земли. Иначе космос называют Вселенной (место вселения человека).
Вселенная – окружающий нас мир, бесконечный в пространстве, во времени и по многообразию форм заполняющего его вещества и его превращений. Вселенную в целом изучает астрономия.
> Астрономия (от греч. astron – звезда, nomos – наука) – наука о движении, строении, возникновении, развитии небесных тел, их систем и Вселенной в целом.
Основной методполучения астрономических знаний – наблюдение, поскольку, за редким исключением, эксперимент при изучении Вселенной невозможен.
Современная астрономия включает в себя несколько более узких научных дисциплин – астрофизику, астрохимию, радиоастрономию и др. Интенсивно развивается космология – раздел астрономии, тесно связанный с физикой.
> Космология (от греч. hosmos – мир и logos – учение) – область науки, в которой изучаются Вселенная как единое целое и космические системы как ее части.
Учитывая древнегреческое значение термина «космос» – «порядок», «гармония», – важно отметить, что космология открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет собой цель изучения Вселенной как единого упорядоченного целого.
Космология близко соприкасается с космогонией (от греч. hosmos – мир, gonos – рождение), разделом астрономии, изучающим происхождение космических объектов и систем. Вместе с тем подход космологии и космогонии к изучаемым явлениям различен – космология изучает закономерности всей Вселенной, а космогония рассматривает конкретные космические тела и системы.
Мир един, гармоничен и одновременно имеет многоуровневую организацию. Вселенная – это мегамир. Нет жесткой границы, однозначно разделяющей микро-, макро– и мегамиры. При несомненном качественном отличии они взаимосвязаны. Так, наша Земля представляет макромир, но в качестве одной из планет Солнечной системы она одновременно выступает и как элемент мегамира. Вселенная представляет собой упорядоченную систему отдельных взаимосвязанных элементов различного порядка. Это небесные тела (звезды, планеты, спутники, астероиды, кометы), планетные системы звезд, звездные скопления, галактики.
Звезды – гигантские раскаленные самосветящиеся небесные тела.
Планеты – холодные небесные тела, которые обращаются вокруг звезды.
Спутники (планет) – холодные небесные тела, которые обращаются вокруг планет.
Например: Солнце – это звезда, Земля – это планета, Луна – это спутник Земли. Небесные тела, находящиеся в зоне существенного действия силы тяготения звезды, образуют ее планетную систему.
Так, Солнечная система (или планетная система) – совокупность небесных тел – планет, их спутников, астероидов, комет, обращающихся вокруг Солнца под действием силы его тяготения. В Солнечную систему входят 9 планет, их спутники, свыше 100 тысяч астероидов, множество комет.
Астероиды (или малые планеты) – небольшие холодные небесные тела, входящие в состав Солнечной системы. Имеют диаметр от 800 км до 1 км и менее, обращаются вокруг Солнца по тем же законам, по которым движутся и большие планеты.
Кометы – небесные тела, входящие в состав Солнечной системы. Имеют вид туманных пятнышек с ярким сгустком в центре – ядром. Ядра комет имеют маленькие размеры – несколько километров. У ярких комет при приближении к Солнцу появляется хвост в виде светящейся полосы, длина которого может достигать десятков миллионов километров.
Звезды вместе с их планетными системами и межзвездной средой образуют галактики. Галактика – гигантская звездная система, насчитывающая более 100 млрд звезд, обращающихся вокруг ее центра. Внутри галактики отмечают звездные скопления. Звездные скопления – группы звезд, разделенные между собой меньшим расстоянием, чем обычные межзвездные расстояния. Звезды в такой группе связаны общим движением в пространстве и имеют общее происхождение. Галактики образуют метагалактику. Метагалактика – грандиозная совокупность отдельных галактик и скоплений галактик.
В современной трактовке понятия «метагалактика» и «Вселенная» чаще отождествляют. Но иногда метагалактика толкуется лишь как видимая часть Вселенной, при этом Вселенная сводится к бесконечности. Однако если принять, что за пределами метагалактики существует космический вакуум, то такую форму материи трудно отнести к Вселенной, потому что там нет устойчивых элементарных частиц и атомов, нет звезд, нет галактик. Поэтому для бесконечного мира более подходит философское понятие материального мира, частью которого является Вселенная или метагалактика.
При изучении объектов Вселенной имеют дело со сверхбольшими расстояниями. Для удобства при измерении таких сверхбольших расстояний в космологии используют специальные единицы:
¦ Астрономическая единица (а. е.) соответствует расстоянию от Земли до Солнца – 150 млн км. Эта единица, как правило, применяется для определения космических расстояний в пределах Солнечной системы. Например, расстояние от Солнца до самой удаленной от него планеты – Плутона – 40 а. е.
¦ Световой год – расстояние, которое световой луч, движущийся со скоростью 300 000 км/с, проходит за один год, – 1013 км; 1 а.е. равна 8,3 световой минуты. В световых годах определяют расстояние до звезд и других космических объектов, находящихся за пределами Солнечной системы.
¦ Парсек (пк) – расстояние, равное 3,3 светового года. Используют для измерения расстояний внутри звездных систем и между ними.
При определении расстояний до других галактик используют еще более крупные единицы – килопарсек (Кпк) – 103 пк, мегапарсек (Мпк) – 106 пк. Все сведения, накопленные человечеством о Вселенной, – результат наблюдений. Первые астрономические знания были получены еще мыслителями древнего мира. Астрономы стран Древнего Востока – Египта, Вавилонии, Индии, Китая – научились предсказывать наступления затмений, следили за движением планет. Эти астрономические знания, накопленные еще в VII–VI вв. до н. э., заимствовали древние греки.
В VI в. до н. э. великий ученый и философ Древней Греции Аристотель фактически выдвинул идею геоцентрического (от греч. geo – земля) строения Вселенной. Аристотель считал, что Земля и все небесные тела шарообразны. Шарообразность Луны он доказал, изучая ее фазы, а шарообразность Земли объяснил характером лунных затмений. На диске Луны край земной тени всегда круглый, а это может быть только при условии шарообразности Земли. Аристотель считал Землю центром Вселенной, крупнейшим ее телом, вокруг которого вращаются все небесные тела. Вселенная, по мнению Аристотеля, имеет конечные размеры, ее как бы замыкает сфера звезд. Таким образом, по Аристотелю, Земля – неподвижный центр Вселенной.
После Аристотеля некоторые ученые высказывали смелые и правильные догадки об устройстве Вселенной. Так, живший в III в. до н. э. греческий астроном Аристарх Самосский считал, что Земля обращается вокруг Солнца. Расстояние до Солнца он определял в 600 диаметров Земли. На самом деле вычисленное им расстояние в 20 раз меньше действительного, но во времена Аристарха Самосского и оно казалось невообразимо огромным. Однако это расстояние мыслитель считал ничтожным по сравнению с расстояниями от Земли до звезд. Но гениальные мысли Аристарха Самосского не были поняты современниками.
Во II в. до н. э. окончательно сформировалась геоцентрическая система мира.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40