А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Меня не покидала мысль: "Боже, неужели это правильно?". Сев за стол, я принялся лихорадочно строчить в блокноте. Через час-другой я закончил все выкладки и убедился в том, что все ключевые шаги мной проверены и они прекрасно согласуются. Я еще раз просмотрел доказательство от начала и до конца. Все работало, как надо! На Международном конгрессе присутствовали тысячи математиков, и в беседе с некоторыми из коллег я упомянул о том, что мне удалось доказать, что Великая теорема Ферма следует из гипотезы Таниямы-Шимуры. Новость распространилась, как лесной пожар. Мои коллеги бросились ко мне с вопросом: «Правда ли, что Вам удалось доказать, что эллиптическая кривая Фрея не модулярна?» Я подумал минуту-другую и уверенно заявил: "Да!"».
Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы-Шимуры. Если бы кому-нибудь удалось доказать, что любая эллиптическая кривая модулярна, то из этого следовало бы, что уравнение Ферма не имеет решений в целых числах, и Великая теорема Ферма была бы тотчас же доказана.
На протяжении трех с половиной столетий Великая теорема Ферма была изолированной проблемой, занимательной и неразрешимой головоломкой на краю математики. Теперь Кен Рибет, вдохновленный Герхардом Фреем, передвинул проблему Ферма в центр событий. Самая занимательная проблема, остававшаяся нерешенной с XVII века, оказалась неразрывно связанной с самой значительной проблемой XX века. Головоломка огромного исторического и эмоционального значения оказалась связанной с гипотезой, способной революционизировать современную математику. Действительно, теперь математики могли подходить к доказательству Великой теоремы Ферма, придерживаясь стратегии доказательства от противного. Чтобы доказать, что Великая теорема Ферма верна, математики исходили из предположения, что она неверна. Из этого бы следовало, что гипотеза Таниямы-Шимуры неверна. Но если бы можно было доказать, что гипотеза Таниямы-Шимуры верна, то из этого следовало бы, что и Великая теорема Ферма должна быть верна.
Но в течение тридцати лет доказать гипотезу Таниямы-Шимуры не удавалось, и надежд на успех оставалось все меньше. Пессимистом был даже Кен Рибет: «Я был одним из очень многих, кто считал гипотезу Таниямы-Шимуры совершенно не доказуемой. Я и не пытался доказывать ее. Об этом нечего было и думать. Эндрю Уайлс был, по-видимому, одним из немногих людей на Земле, кто осмелился попытаться доказать эту гипотезу».

Глава 6. Тайные вычисления
Кто знает толк в решении задач, должен обладать двумя несовместимыми качествами: живым воображением и несгибаемым упорством.
Говард У. Ивс

«Однажды вечером, в конце лета 1986 года, я попивал чай в гостях у своего приятеля. В беседе он между прочим упомянул о том, что Кену Рибету удалось доказать существование взаимосвязи между гипотезой Таниямы-Шимуры и доказательством Великой теоремы Ферма. Я почувствовал себя так, словно через меня пропустили мощный электрический разряд. Мне сразу стало ясно, что отныне весь ход моей жизни круто изменился: ведь от доказательства Великой теоремы Ферма меня отделяло теперь только одно препятствие: доказательство гипотезы Таниямы-Шимуры. Значит, моя детская мечта — не пустой звук, а вполне реальное дело, которым стоит заниматься. Не медля ни минуты, я отправился домой и принялся за работу».
Более двух десятилетий прошло с того дня, когда Эндрю Уайлс нашел на библиотечной полке книгу Э.Т. Белла, вдохновившую его принять вызов, брошенный математикам Пьером де Ферма. Но только теперь Уайлс впервые отчетливо увидел путь к осуществлению своей детской мечты. Уайлс вспоминает, как резко за один вечер изменилось его отношение к гипотезе Таниямы-Шимуры: «Мне вспомнилось, как один знакомый математик отозвался о гипотезе Таниямы-Шимуры дерзко и уничижительно, назвав ее "упражнением для заинтересованного читателя". Ну что же, с этого вечера я стал очень заинтересованным читателем!»
Завершив под руководством профессора Джона Коутса работу над диссертацией на соискание ученой степени Ph.D. в Кембридже, Уайлс перебрался через Атлантику, в Принстонский университет, где ко времени описываемых событий успел стать профессором. Благодаря научному руководству Коутса, Уайлс, по-видимому, знал об эллиптических кривых больше, чем кто-либо другой в мире, но он прекрасно сознавал, что ни его обширные познания, ни отточенная техника решения математических задач не гарантируют успеха. Гипотеза Таниямы-Шимуры стояла перед ним подобно неприступной крепости.

В 1986 году Эндрю Уайлс узнал, что Великую теорему Ферма, возможно удастся доказать с помощью гипотезы Таниямы-Шимуры
Многие другие математики, в том числе и Джон Коутс, считали любые попытки доказать гипотезу Таниямы-Шимуры безнадежным делом: «Сам я весьма скептически относился к тому, что красивая связь между Великой теоремой Ферма и гипотезой Таниямы-Шимуры действительно приведет к какому-нибудь результату. Должен признаться, я не думал, что гипотеза Таниямы-Шимуры доказуема. Как ни красива эта проблема, решить ее не представлялось возможным. Я полагал, что мне не удастся увидеть ее доказанной при жизни».
Уайлс знал, что шансы на успех у него чрезвычайно малы. Но даже если бы ему не удалось найти доказательство Великой теоремы Ферма, то он не считал бы, что усилия потрачены им напрасно: «Разумеется, гипотеза Таниямы-Шимуры долгие годы оставалась открытой. Ни у кого не было даже намеков на доказательство, но, по крайней мере, эта гипотеза оставалась в основном русле развития математики. Пытаясь найти доказательство гипотезы Таниямы-Шимуры, я мог получить результаты, которые, хотя они и не позволят решить проблему в целом, все же можно будет считать хорошей математикой. Я не напрасно потрачу время. Итак, роман с Ферма, длившийся всю мою жизнь, сколько я себя помню, дополнился проблемой, которую высокие профессионалы считали неразрешимой».
На чердаке отшельника
В начале XX века великого математика Давида Гильберта спросили, почему он никогда не пытался доказать Великую теорему Ферма. На это Гильберт ответил: «Прежде чем начать, я должен был бы затратить года три на усиленную подготовку, а у меня нет столько времени, чтобы так расточительно расходовать его на решение проблемы, которое может закончиться неудачей». Уайлс сознавал, что для того, чтобы иметь хоть малейшую надежду найти доказательство, ему сначала необходимо с головой погрузиться в проблему, но, в отличие от Гильберта, был готов пойти на риск. Уайлс прочитывал все новейшие номера математических журналов и осваивал самые последние математические методы. Собирая оружие, необходимое для предстоящей битвы, Уайлс провел следующие восемнадцать месяцев, знакомясь даже с самыми незначительными результатами или методами, имевшими отношение к эллиптическим кривым и модулярным формам. Надо сказать, что, по его прикидкам, любая сколько-нибудь серьезная попытка доказательства вполне могла потребовать от математика-одиночки десятилетних усилий.
Уайлс отказался от всего, что не было напрямую связано с доказательством Великой теоремы Ферма. Он перестал принимать участие в нескончаемой веренице конференций и симпозиумов. Оставаясь сотрудником математического факультета Принстонского университета, Уайлс продолжал проводить учебные семинары, читать лекции для студентов и руководить курсовыми и дипломными работами.
«Я имел обыкновение уединяться в кабинете, где пытался найти фрагменты решений тех или иных математических проблем, которые должны были стать частями единой мозаики… Эти фрагменты я пытался сопоставить с каким-нибудь прежним широким, на уровне понятий, пониманием различных разделов математики, которые могли бы прояснить ту проблему, над которой я размышлял. Иногда приходилось идти и заглядывать в какую-нибудь книгу, чтобы узнать, как эта задача решена там. Иногда это требовало слегка изменить известный результат, проделать какие-то дополнительные вычисления. Иногда я приходил к заключению, что все сделанное раньше совершенно бесполезно. В этом случае мне приходилось изобретать что-нибудь совершенно новое. Неизвестно, откуда что бралось.
По существу, это одна из загадок мышления. Часто для того, чтобы привести в порядок мысли, бывает необходимо попытаться изложить их в письменном виде. Когда вы по-настоящему заходите в тупик, когда речь идет о настоящей проблеме, которую требуется решить, обычное традиционное математическое мышление не может помочь вам ничем. К новой идее ведет только длительный период необычайного сосредоточения на проблеме без каких-либо отвлечений. Необходимо действительно не думать ни о чем, кроме проблемы, полностью сосредоточиться на ней. Затем вы должны остановиться, после чего, насколько я могу судить, наступает период релаксации, во время которого вступает в игру подсознание, и в этот момент к вам приходит новая идея».
С того самого момента, когда Уайлс принял важное для себя решение заняться систематическим поиском доказательства гипотезы Таниямы-Шимуры, он вознамерился работать в полной изоляции и секретности. В современной математике сложилась культура кооперации и сотрудничества, поэтому принятое Уайлсом решение могло бы показаться возвращением в прошлое. Он как бы подражал образу действий самого Ферма, самому знаменитому из математических отшельников. Свое решение работать в обстановке полной секретности Уайлс отчасти объясняет желанием работать без помех, не отвлекаясь от основной задачи: «Я понимал, что все, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес. Нельзя как следует сосредоточиться на решении важной задачи, если полностью не отвлечься от всего постороннего. Слишком много зрителей заведомо мешают достижению цели».
Еще одним мотивом избранного Уайлсом курса на уединение и секретность была его жажда славы. Уайлс опасался, что когда он проделает основную часть доказательства, но ему не будет доставать заключительного элемента выкладок, весть о прорыве просочится наружу — и ничто не помешает какому-нибудь сопернику из числа коллег-математиков воспользоваться проделанной Уайлсом работой, завершить доказательство и похитить награду.
В последующие годы Уайлсу удалось совершить ряд чрезвычайно важных открытий, ни одно из которых не обсуждалось и не было опубликовано прежде, чем он довел доказательство до конца. Даже самые близкие его коллеги оставались в неведении относительно проводимых им исследований. Джон Коутс вспоминает, что в разговоре с Уайлсом несколько раз упоминал о гипотезе Таниямы-Шимуры, но Уайлс ничем не выдал своего интереса к проблеме: «Вспоминаю, что несколько раз упоминал в беседе с ним: "Эта связь с Великой теоремой Ферма просто великолепна, но пытаться искать доказательство гипотезы Таниямы-Шимуры — совершенно безнадежное дело". Насколько мне помнится, Уайлс в ответ только улыбался».
Кен Рибет, установивший связь между Великой теоремой Ферма и гипотезой Таниямы-Шимуры, также пребывал в полном неведении относительно тайной деятельности Уайлса. «Вероятно, это единственный известный мне случай, когда кто-то работал над задачей так долго, ни словом не обмолвившись о том, чем он занимается, без обсуждения достигнутых успехов. В моем опыте это беспрецедентный случай. В математическом сообществе принято обмениваться идеями. Математики собираются на конференциях, навещают друг друга, устраивают семинары, обмениваются новостями по электронной почте, разговаривают по телефону, просят подкинуть свежую идею — связь друг с другом им просто необходима. Когда вы разговариваете с коллегами-математиками, вас дружески похлопают по спине, вам скажут, что вы сделали нечто важное, вам подскажут новые идеи. Это — своего рода поддержка. Если вы отрезаете себя от всего этого, то вы делаете нечто психологически очень странное».
Чтобы не возбуждать подозрений, Уайлс придумал хитрую уловку, которая должна была сбить его коллег со следа. В начале 80-х годов он выполнил обширное исследование одного конкретного типа эллиптической кривой и уже собрался было опубликовать его полностью, но открытия Рибета и Фрея заставили его изменить свои намерения. Уайлс решил публиковать свое исследование «по кусочкам», по одной небольшой статье каждые полгода. Это должно было убедить его коллег в том, что он все еще продолжает заниматься своими обычными исследованиями. И столько времени, сколько он сможет поддерживать свою «дымовую завесу», Уайлс сможет продолжать без помех заниматься предметом своей истинной страсти, не сообщая никому о полученных результатах.
О тайне Уайлса знал только один человек — его жена Нада. Они поженились вскоре после того, как Уайлс приступил к работе над доказательством, и, когда стали появляться первые результаты, он посвятил в свою тайну ее и только ее. В последующие годы семья была его единственным отвлечением от проблемы. «Только моя жена знала, что я работаю над доказательством Великой теоремы Ферма. Я рассказал ей об этом в наш медовый месяц, через несколько дней после нашей свадьбы. Моя жена слышала о Великой теореме Ферма, но в то время она еще ничего не знала о том романтическом ореоле, который эта теорема имела в глазах математиков, и о том, каким шипом она оставалась в теле нашей науки столь долгие годы».
Дуэль с бесконечностью
Чтобы доказать Великую теорему Ферма, Уайлсу было необходимо сначала доказать гипотезу Таниямы-Шимуры о том, что каждой эллиптической кривой можно поставить в соответствие некоторую модулярную форму. Многие математики отчаянно пытались доказать эту гипотезу, но все попытки окончились неудачей. Уайлс хорошо сознавал, какие чудовищные трудности ожидают его на пути к доказательству: «В конце концов всё, что наивно надеялись сделать одни и что действительно пытались сделать другие, сводилось к тому, чтобы пересчитать эллиптические кривые и модулярные формы и показать, что число одних совпадает с числом других. Но никто и никогда не предложил простого способа, который позволил бы сделать это. Первая трудность состоит в том, что существует бесконечно много эллиптических кривых и бесконечно много модулярных форм, и поэтому количество тех и других невозможно выразить конечным числом».
Уайлс решил воспользоваться своим обычным подходом к решению трудных задач. «Иногда я записываю на листке бумаги каракули. Строго говоря, они ничего не обозначают. Это, так сказать, подсознательные каракули. Компьютером я не пользуюсь никогда». Во многих задачах теории чисел, компьютеры оказываются совершенно бесполезными. Гипотеза Таниямы-Шимуры относится к бесконечно многим уравнениям, и хотя компьютер может проверить за несколько секунд каждый отдельный случай, он никогда не сможет проверить все случаи. Требовалось нечто другое: логическое рассуждение, которое допускало бы разбиение на отдельные шаги, которое бы в целом указывало причину и давало объяснение, почему все эллиптические кривые без исключения должны соответствовать модулярным формам. И в поиске доказательства Уайлс полагался только на листок бумаги, карандаш и свой разум. «Я не забывал ни на миг о своей цели. С этим я просыпался по утрам, над этим размышлял весь день, об этом думал, засыпая. Не отвлекаясь, я только и делал, что размышлял и размышлял над всем этим».
После года размышлений Уайлс решил избрать за основу доказательства общий метод, известный под названием индукции. Индукция — чрезвычайно мощный способ доказательства, поскольку он позволяет математику доказать, что утверждение справедливо для бесконечно многих случаев, доказав, что оно справедливо только в одном случае. Например, представим себе, что некий математик хочет доказать, что какое-то утверждение справедливо для всех натуральных чисел от 1 до бесконечности. Первый шаг состоит в том, чтобы убедиться в истинности этого суждения для числа 1, что обычно достигается прямой проверкой. Следующий шаг состоит в том, чтобы показать, что если утверждение верно для числа 1, то оно должно быть верно для числа 2, а если оно верно для числа 2, то оно должно быть верно для числа 3, а если оно верно для числа 3, то оно должно быть верно для числа 4 и т. д. Более общо, математик должен показать, что если утверждение верно для некоторого числа n , то оно должно быть верно для следующего числа n +1.
По существу доказательство по индукции представляет собой процесс, состоящий из двух частей:
1. доказательство того, что утверждение верно в первом случае;
2. доказательство того, что если утверждение верно для какого-нибудь одного случая, то оно должно быть верным для следующего случая.
Другой способ наглядно представить себе доказательство по индукции заключается в том, чтобы бесконечное количество случаев сравнить с бесконечным множеством костей домино.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36