А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Таким образом, нож встречает изображение "звезды" со
Рис. 33. Совершенный теневой прибор.
1 -- осветитель с конденсором, 2 -- щель и нож, 3 -- винт вертикального движения, 4 -- винт продольного движения, 5 -- часовой (дисковый) индикатор.
скоростью в два раз большей, чем в случае с неподвижной "звездой". За то же время он проходит расстояние в два раза меньшее, и отсчет будет в два раза меньше. Поэтому нам всегда надо иметь в виду, как устроен теневой прибор: подвижна или неподвижна его "звезда". В нашем первом теневом приборе "звезда" оставалась неподвижной. Отчасти это объясняется тем, что в этом случае в два раза легче снимать отсчет, а с другой стороны, допустимое расстояние между ножом и "звездой" достаточно велико. В случае нашего 150-миллиметрового зеркала, например, оно не должно быть больше 26 мм.
Однако продольная аберрация параболического зеркала при испытании из центра кривизны теневым прибором с совмещенными "звездой" и ножом вдвое меньше:
В идеале расстояние между, щелью и ножом должно быть равно нулю. На первый взгляд технически это сделать невозможно. Однако в Новосибирском клубе построен подобный теневой прибор (рис. 34).
Рис. 34. Осветительная система совершенного теневого прибора: 1--лампочка, 2-конденсор, 3 - нож , 4 - вторая щечка щели, 5 - прижимные пластинки
Здесь свет 6-вольтовой лампочки 1 с помощью конденсора 2 фокусируется на крае ножа 3 (лезвии бритвы), установленного под углом 45є к оси конденсора. Этот край служит одновременно одной из щечек щели. Вторая щечка 4 -- также лезвие бритвы Для регулировки ширины щели оба обломка лезвия прижимаются с помощью двух металлических пластин 5 и винтов. После регулирования винты фиксируют лезвия.
Важно, чтобы нож несколько выступал над второй щечкой, как это показано на рис. 34.
28. КОНТРОЛЬ ПАРАБОЛИЧЕСКОГО ЗЕРКАЛА ПО ЗОНАМ
Если в центре кривизны центральной зоны параболического зеркала поместить "звезду" и с помощью ножа получить теневую картину, она уже не будет иметь плоский рельеф.
В тех случаях, когда зеркало имеет небольшое относительное отверстие и небольшой диаметр, достаточно испытать его в обоих критических положениях ножа и, установив нож точно в промежуточном положении, убедиться в том, что "вершина" "бублика" лежит на зоне 70% радиуса заготовки зеркала (см. рис. 29, а, в, д).
В предфокальном критическом положений ножа на зеркале должна быть видна полутень, занимающая его центральную часть, тогда как правая часть зеркала покрыта резкой тенью. Отодвигая нож от зеркала, мы видим, как полутень расширяется, занимая все большую часть зеркала; а ее середина начинает темнеть. Наступает момент, когда тень ножа в центре расположена слева -- для центральной зоны мы уже прошли точку фокуса, и нож находится в зафокальном положении для этой зоны (рис. 29, б). Внешняя зона покрыта тенью с правой стороны -- для внешней зоны мы еще не прошли точку фокуса. В некоторой промежуточной зоне видна полутень. Нож находится точно в фо-кусе именно этой зоны. Добьемся того, чтобы границы тени справа и слева проходили точно через центр зеркала и служили продолжением одна другой. Кроме того, добьемся, чтобы площадь теней справа и слева была примерно одинаковой. В этот момент нож находится точно посередине между критическими положениями. Если наше зеркало -- параболоид, то полутень будет расположена на зоне 70% (рис. 29, в).
Итак прежде всего измерим продольную аберрацию зеркала. Она должна быть равна
если источник света ("звезда") неподвижен, и
если "звезда" движется вместе с ножом.
Например, для неподвижной "звезды" 200-миллиметровый параболоид с фокусным расстоянием 1200 мм (радиус кривизны равен 2400 мм) имеет продольную аберрацию, равную 4,17 мм, а для подвижной "звезды" -- 2,09 мм.
Затем добьемся того, чтобы в положении, когда справа и слева площади теней приблизительно равны и граница теней проходит точно по диаметру зеркала, "вершина" "бублика" находилась на зоне 70%, а продольная аберрация равна половине вычисленной.
Если "вершина" "бублика" расположена ближе к центру зеркала, а продольная аберрация уже равна половине вычисленной, надо сполировать зону с радиусом примерно 0,5.
Если "вершина" "бублика" лежит ближе к краю зеркала, надо углубить центральную часть зеркала примерно до зоны 0,5 и несколько опустить зону с радиусом 0,8--0,9. Для уверенного замера радиуса зон согнем из мягкой проволоки толщиной 1--1,5 мм "маску", как показано на рис. 29, е.
29. КОМПЕНСАЦИОННЫЙ МЕТОД РОНКИ -- МОБСБИ
Вместо ножа Васко Ронки предложил использовать решетку, представляющую собой серию тесно расположенных параллельных непрозрачных линий и промежутков между ними. Решетка Ронки обычно имеет заштрихованную часть 5X5 или 10 Х 10 мм. На каждый миллиметр приходится по 5 линий и промежутков.
Если решетку Ронки расположить в предфокальном положении на расстоянии 20--25-мм от критического положения, то, рассматривая зеркало сквозь решетку (так же, как это мм делали с ножом), мы увидим на зеркале серию вертикальных полос (если, конечно, и сама решетка установлена, вертикально). На идеальной сфере видим совершенно прямолинейные тени. Если же зеркало имеет ошибки, линии искривляются. Как "читать" теневую картину Ронки?
Приблизим решетку к фокусу. Очевидно, что сходящийся пучок света будет пересекать меньше полос решетки, и на зеркале мы также видим меньше полос, хотя они будут видны в большем масштабе. При удалении решетки от точки фокуса число теней на зеркале растет, но масштаб, в котором видна решетка, уменьшается. Сформулируем правило: чем ближе к фокусу зеркала или одной зоны находится решетка, тем крупнее на зеркале или на этой зоне видны тени решетки.
Теперь ясно, что если зоны зеркала имеют различные радиусы кривизны и фокусные расстояния, тени решетки на этих зонах будут видны в различном масштабе и сами линии искривятся.
Рис. 28, б показывает, как выглядят теневые картины Ронки. Заметим, что при переходе от предфокального положения решетки к зафокальному картина полос меняется. Это нетрудно понять, но для того, чтобы в дальнейшем не путаться, будем считать, что решетка всегда расположена в предфокальном положении. Интересна форма полос на параболоиде. Эти искривленные линии сами являются параболами (в первом приближении). Если бы мы могли на глаз точно оценивать кривизну этих линий, то проблема изготовления параболоида свелась бы к получению на теневой картине линий точно определенной кривизны. Однако глаз не в состоянии так точно оценить кривизну парабол. В то же время он легко оценивает с большой точностью прямолинейность прямых линий. Этим и воспользовался Эрик Мобсби. Он предложил [21] искривить линии решетки Ронки так, чтобы они были выгнуты в обратную сторону на величину, которую можно заранее вычислить. Тогда на теневой картине параболоида мы увидим прямые линии.
Не вдаваясь в подробности, опишем метод изготовления решетки Ронки--Мобсби, как это делает сам Мобсби, лишь незначительно видоизменив его.
Основная идея сводится к тому, что на листе ватмана в масштабе 100: 1 вычерчивается решетка, а потом переснимается фотоаппаратом на высококонтрастную мелкозернистую пленку с уменьшением в 100 раз.
На листе ватмана вычертим прямоугольник с горизонтальной стороной 50 мм и вертикальной 71,5 мм (рис. 35). Проведем две взаимно перпендикулярные оси симметрии. Из верхних углов прямоугольника надо провести к нижним две параболы, вершины которых отстоят от вертикальных сторон на величину р:
где у -- радиус крайней зоны, или полудиаметр зеркала, R -- радиус кривизны зеркала при вершине.
Предположим, что нам надо испытать зеркало диаметром 200 мм и радиусом кривизны 2800 мм (фокусное расстояние равно 1400 мм), тогда у3 = 106, R2 = 7,84 * 106 и р = 6,6 мм. На эту величину должны отстоять вершины парабол от вертикальных сторон прямоугольника. Для того чтобы вычертить эти параболы уверенно, надо найти еще несколько точек, соединяя которые мы и получим параболы с нужной точностью.
Мобсби предлагает такой путь вычислений с помощью таблицы (табл. 10) В первой строке записываем десятичные дроби от 0 до 1,0, во второй -- численные значения этих долей, выраженные в мм, для чего числа первой строки умножим на 35,75. В третьей строке -
Рис. 35. Решетки Ронки -- Мобсби. а) Вычерчивание парабол, б) вид испытательной сетки, содержащей нож Фуко, параболическую решетку Ронки--Мобсби и традиционную решетку Ронки, в) схема испытаний.
квадраты величин первой строки. Эти строки одинаковы для всех зеркал без исключения и потому их можно отпечатать в большом количестве на пишущей машинке.
В четвертой строке записываются произведения чисел третьей строки на р=6,6 мм. Пример расчета точек параболы для 200-миллиметрового зеркала дан в приводимой таблице. Значения чисел округлены с достаточной для практики точностью.
Теперь наносим нужные точки на чертеж (рис. 35, а). Прежде всего на вертикальные стороны прямоугольника нанесем величины из 2-й строки, откладывая эти числа верх и вниз от горизонтальной оси симметрии. Затем от этих точек внутрь прямоугольника откладываем соответствующие числа из 4-й строки. Делаем эту работу с такой тщательностью, на какую только способны. После нанесения всех точек соединяем их плав
Т а б л и ц а 10
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
0,0
3,6
7,2
10,8
14,4
18,0
21,6
25,2
28,8
32,4
36
0,0
0,01
0,04
0,09
0,16
0,25
0,36
0,49
0,64
0,81
1,00
0,0
0,07
0,26
0,59
1,06
1,65
2,38
3,23
4,22
5,35
6,6
ной кривой без переломов. Лучше всего воспользоваться лекалом.
Теперь, установив центр циркуля в центре прямоугольника, проведем окружность радиусом 35,75 мм. Конечно, на практике этот радиус можно взять, равным 36 мм. После того как фигура вычерчена, тщательно обведем ее тушью. Вертикальную ось симметрии проведем жирной линией толщиной в 1,5--2 мм. Такой же толщины будут и параболы. Окружность проведем линией в 1 мм или немного меньше. Прямоугольник и другие вспомогательные линии сотрем.
Теперь эту окружность надо переснять на пленку "Микрат" или другую мелкозернистую и контрастную пленку с уменьшением в 100 раз. Для того чтобы получить масштаб 1 : 100, надо расположить чертеж на расстоянии, равном 101 фокусному расстоянию от объектива фотоаппарата. Например, если фокусное расстояние объектива равно 50 мм, то расстояние до чертежа составит 5050 мм (5 м 50 мм) *).
*) это расстояние нужно откладывать от чертежа до так называемой главной плоскости объектива, но ее положение обычно неизвестно. Поэтому расстояние можно измерять от чертежа до плоскости фотопленки; тогда откладывается 102 фокусных расстояния объектива.
Объектив фотоаппарата должен быть задиафрагмирован до значения 8 или 11. Прежде чем диафрагмировать объектив, его надо тщательно сфокусировать на чертеж. Если не удалось достать пленку "Микрат", можно воспользоваться пленкой "ЗТ-8" или "Дубль-позитив", которые можно достать на кино- и телестудиях или кинокопировальных фабриках. Многие народные киностудии и кинокружки имеют такие пленки. Если же ни того, ни другого достать не удалось, можно использовать обращаемую пленку (обязательно черно-белую) небольшой чувствительности, например "ОЧ-22", которая обрабатывается с обращением. Остальные пленки обрабатываются также с обращением. Для этого первое проявление делается в позитивном (для фотобумаг) проявителе в течение 4 минут. Остальная обработка ведется в строгом соответствии с режимом обращения, рекомендуемым фабрикой пленок*).
*) Можно обойтись без обращения, зафиксировав пленку сразу после проявления, однако зернистость изображения в этом случае будет больше, кроме того, полученное негативное изображение надо отпечатать контактно на позитивную пленку, чтобы получить позитив решетки.
Итак, мы пересняли чертеж и проявили пленку. Устанавливаем решетку в предфокальном положении, перемещаем ее (рис. 35, в), пока не увидим на зеркале ее тень. Приближая или удаляя решетку и двигая ее в направлениях вверх -вниз, вправо -- влево, устанавливаем решетку так, чтобы тень окружности решетки лежала точно на окружности зеркала. Тогда вертикальная ось симметрии будет проходить точно по вертикальному диаметру зеркала, а параболы будут расположены на некотором расстоянии от края зеркала. Наша задача -- добиться того, чтобы параболические линии на зеркале выглядели прямыми. Это будет означать, что наше зеркало -- параболоид.
Огромное преимущество метода Ронки -- Мобсби заключается в том, что не нужны измерения продольных аберраций, и теневой прибор может иметь довольно примитивную механическую часть. Так как параболоид при испытаниях методом Ронки -- Мобсби напоминает сферу, у которой нет продольных аберраций. Этот метод называется "нуль-тестом".
Но при испытаниях традиционным методом Ронки тени линий лишь в первом приближении являются параболами, поэтому метод Мобсби пригоден для относительно длиннофокусных зеркал с большим относительным фокусом. Так, 110-миллиметровое зеркало должно иметь относительный фокус 4 или больше, 150-милли-метровое--5 и более, 200-миллиметровое-- 6, 250-миллиметровое -- 7, 300-миллиметровое -- 8 и более.
30. ТОЧНОСТЬ ПАРАБОЛИЗАЦИИ ЗЕРКАЛА.
Если оптически точная поверхность отступает от заданной формы не более чем на 1/8 длины волны света, то она может считаться совершенной. 1/8 длины волны света -- это 0,00056 мм : 8 = 0,00007 мм = 0,07 мкм *).
*) 0,56 мкм -- длина волны, к которой более всего чувствителен глаз.
Отступление параболоида от ближайшей сферы сравнения составляет
где D -- диаметр, а V -- относительный фокус зеркала. Например, зеркало диаметром 250 мм и с фокусным расстоянием 1500 мм имеет относительный фокус 6 и после параболизации отступает от ближайшей сферы сравнения на 0,00028 мм, или на 0,28 мкм. Допустимое отступление составляет 0,07 мкм, или 25% от величины параболизации. Значит, выполняя параболизацию, мы можем немного не допараболизовать или перепараболизовать зеркало, если продольная аберрация зеркала не будет отличаться более чем на 25% от вычисленной величины. Иначе говоря, в нашем примере с 250-миллиметровым зеркалом, продольная аберрация которого равна 5,2 мм **), зеркало может иметь аберрацию в пределах от 6,5 до 3,9 мм.
**) Продольная аберрация в этом примере вычислена из расчета, что источник света неподвижен.
Если при параболизации продольная аберрация не будет выходить за эти пределы, то зеркало будет работать безупречно.
В табл. 11 приведены пределы ошибок продольной аберрации при параболизации для зеркал с различным диаметром и фокусным расстоянием. Ошибки выражены в процентах, если принять, что в идеале продольная аберрация составляет100%.
В тех случаях, когда ошибка продольной аберрации в таблице составляет 100% и более, зеркало может иметь продольную аберрацию равной нулю (быть сферой) или быть гиперболоидом с аберрацией в два раза
Таблица 11
V
D
80
110
160
200
250
300
3
4
5
6
7
8
9
10
12
9,8
23
61,9
128,6


7
16,7
32,4
56,0
88,8
132,1

4,9
11,5
22,4
88,7
61,4
92,1
132,1

3,9
9,1
17,9
30,8
49,0
72,9
104,5

3,1
7,3
14,3
24,8
39,3
58,8
83,3
114,8
2,6
6,1
12,0
20,7
32,9
49,0
70,0
96,0
166,7
больше вычисленной. Отсюда становится понятным, почему, говоря о допустимых ошибках 150-миллимет-рового сферического зеркала, мы назвали допустимой продольную аберрацию 2--2,5 мм. Еще раз напомним, что для сферы эта ошибка может быть допустимой только в сторону плавного параболоида -"бублика". Ошибки такого рода в сторону подвернутого края для сферы недопустимы.
Обычно любители не ограничиваются испытаниями только одного вида. В нашем случае также было бы хорошо проверить зеркало как с помощью решетки Ронки -Мобсби, так и измерением продольных аберраций с помощью ножа Фуко.
31. КАК ПОДОБРАТЬ ДИАГОНАЛЬНОЕ
ЗЕРКАЛО ИЛИ ПРИЗМУ?
Диагональное зеркало телескопа Ньютона можно подобрать из старых оптических деталей. У нас должна быть уверенность в том, что зеркало изготовлено с достаточной точностью. Эта точность может быть несколько ниже точности главного зеркала, так как диагональное зеркало расположено значительно ближе к фокусу, а чем ближе к фокальной плоскости диагональное зеркало, тем с меньшей точностью оно может быть изготовлено. В пределе, когда зеркало лежит непосредственно в фокальной плоскости, его поверхность может быть как угодно неточной.
Для большинства случаев ньютоновского телескопа плоское зеркало располагается в 4--5 раз ближе к фокусу, чем главное зеркало. Поэтому точность изготовления его поверхности может быть раза в 2 меньше,
Рис. 36. Графическое определение размеров диагонального зеркала. Обратите внимание на то, что центр эллиптического зеркала не совпадает с оптической осью.
чем точность поверхности главного зеркала. Таким образом, поверхность этого зеркала не должна уклоняться от плоскости больше чем на 1/4 длины волны света.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23