А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Поэтому в двойной спирали сумма всех пуринов равна сумме всех пиримидинов.А как распределены пурины и пиримидины в одиночной цепи? Если бы распределение было стохастическим, то с частотой 0.5 наугад выбранный нуклеотид оказывался бы, например, аденином или гуанозином. Это тип фразы 2.Сейчас, когда прочтены уже тысячи генов, проверить это предположение элементарно. Но оно было проверено задолго до того. Химики разработали методы разрушения в ДНК только пуринов или только пиримидинов.Пурины, например, разрушаются, если мы обработаем ДНК дифениламином в муравьиной кислоте. В результате ген распадается на смесь блоков – кусочков, в которых пиримидины (Ц и Т) повторяются 1,2,3,4 и более раз. И если бы распределение было случайным, моно– и динуклеотиды преобладали бы. На практике применяют так называемый коэффициент сблоченности β – отношение суммы длинных блоков (4 нуклеотида и выше) к сумме коротких (три нуклеотида и ниже).Мой коллега по лаборатории им. А. Н. Белозерского, А. Л. Мазин определил коэффициент β для ДНК разных организмов – от бактерий до млекопитающих. Получилась довольно четкая картина – в ряду от бактерий до человека β возрастает от 4 до 6 и выше. Сблоченность ДНК с усложнением организации неуклонно растет. А это значит, что снижается ее информационная емкость, как при возникновении корреляций между буквами в тексте. Генетический код становится все более и более неэкономичным. Возникает вопрос: почему это происходит?Намек на ответ содержится в других работах А. Л. Мазина. Вспомним, что в большинстве известных нам случаев информационная РНК синтезируется только на одной из нитей или цепей ДНК, которую называют смысловой. Вторая, комплементарная нить – антисмысловая. Пуриновому блоку в смысловой цепи соответствует пиримидиновый в антисмысловой (и наоборот).Исследования показали, что пиримидиновые, состоящие из Ц и Т, блоки имеют тенденцию скапливаться в смысловой цепи. Возникает асимметрия цепей ДНК. Значит, информационная РНК, на которой синтезируется белок, обогащается пуринами (А и Г). Конечно, она не может на 100% состоять из пуринов, ведь тогда в ней нельзя закодировать такие аминокислоты, как фенилаланин, серин, лейцин. Но тенденция явно имеется.Для объяснения ее А. Л. Мазин вспомнил о старой моей работе с Л. М. Галимовой, в которой мы изучали синтез белков у тутового шелкопряда. Уже первые исследователи передачи генетической информации с гена на белок подметили, что этот процесс (трансляция) подвержен сильным помехам. Рибосомы могут считывать кодоны в матричной, информационной РНК неправильно, и в белок включаются не те аминокислоты. Этот процесс ( мисридинг ) усиливается при повышенной температуре, подкислении среды, высокой концентрации магния и при действии антибиотика стрептомицина. Собственно, антибактериальный эффект стрептомицина тем и объясняется, что рибосомы стрептококков начинают «врать» при тех концентрациях антибиотика, при которых рибосомы человека остаются еще устойчивыми.Мы кормили гусеницу шелкопряда листьями шелковицы, смоченными раствором стрептомицина в лошадиной концентрации. Гусеницы ели, линяли, исправно завивали коконы. А кокон состоит всего из двух белков – фиброина и серицина – клейкого вещества, склеивающего фиброиновые нити.Серицин легко перевести в раствор кипячением – так мы без особых трудов получаем чистейший белок, без примеси других. Гидролизат его можно уже пустить в аминокислотный анализатор. Оказалось, что стрептомицин достоверно изменял состав белка: одних аминокислот становилось больше, других меньше Медников Б. М., Галимова Я. М., Белозерский А. Н. О закономерностях ошибок трансляций in vivo и in vitro // Биохимия. 1970. Т. 35. Вып. 2.

. Первые мы назвали плюс-, вторые минус-аминокислотами.
Оказалось, что эти категории не случайны. Плюс-аминокислоты в матричной (информационной) РНК кодируются в основном пуринами (А и Г), а минус – пиримидинами (Ц и У– уридином, неметилированным тимином, который заменяет Т в РНК). Пурины и пиримидины тоже неоднородны по точности считывания. С учетом литературных данных У в результате неверного прочтения мог быть прочтен рибосомой как Ц, Г, А; Ц – как Г и А; Г– как А, и лишь аденин обычно считывался правильно.Естественно было связать повышенную помехоустойчивость с термодинамической устойчивостью символа. Последняя величина измеряется энергией резонанса – той энергией, которая потребна для изменения структуры вещества. В ряду У, Ц, Г, А эта величина соответственно 1.92, 2.22, 3.84, 3.89 (ккал/моль). Аденин наиболее устойчив, именно потому он легко полимеризуется в опытах (и, вероятно, на первозданной Земле) из цианистого водорода и потому входит в состав АТФ – универсального аккумулятора энергии в биологических системах.А. Л. Мазин предположил, что в ходе эволюции вместе с усложнением структур шло параллельное повышение помехоустойчивости информационного канала ген-белок. А это означало обогащение мРНК пуринами (и смысловой цепи ДНК – пиримидинами). Отбор мутаций, следовательно, идет и на уровне гена – такой вывод он сделал, проанализировав на ЭВМ 64 белка – цитохрома С.Справедлива ли эта гипотеза? Мне, конечно, приятно, что Александр Львович вспомнил через 17 лет о работе, которую я и сам за другими делами давно забыл. Но, увы, если это правда, то не вся правда. Вспомним, что у высших организмов белок кодирует лишь ничтожная доля ДНК – а тот же Мазин показал, что наиболее сблочены, наиболее отличаются от стохастических как раз те части генома, кои сейчас именуют лишними, ненужными и эгоистичными.Могу лишь предположить, что помехоустойчивость этих текстов не менее, если не более важна для организма. Некодирующие белок последовательности также должны быть прочтены – на уровне ДНК или РНК – узнающими их структурами, скорее всего, регуляторными белками.А в результате мы опять приходим к выводу об аналогии между лингвистической и генетической информациями. И в том и в другом случае помехоустойчивость каналов возрастает ценой снижения информационной значимости сигнала. Принцип одинаков, хотя в одном случае информацию считывает рибосома, а в другом – человеческая гортань. Гены просто сохранили больше следов своего случайного, стохастического возникновения.На этом можно бы и кончить главу: определением гена, как стохастической, возникшей в результате случайного перебора последовательности, лишь в незначительной степени отредактированной отбором. Но мог ли ген того же глобина или цитохрома С возникнуть случайно? И мы приходим к новому «проклятому вопросу» современной биологии, который называется: Парадокс миллиона обезьян. Вообще-то эта проблема отнюдь не нова. Философы еще в древности задавались вопросом: возможно ли возникновение достаточно сложной структуры, описываемой большим объемом информации, в результате случайных, стохастических процессов? И все давали отрицательный ответ. Еще Цицерон полагал, что из случайно брошенных знаков алфавита не могут сложиться «Анналы» Энния. Через полторы тысячи лет ему вторит Жан-Жак Руссо: «Если мне скажут, что случайно рассыпавшийся типографский шрифт сложился в „Энеиду“, я и шагу не сделаю, чтобы проверить эту ложь». Теперь эту проблему называют «парадоксом миллиона обезьян». За сколько лет миллион обезьян, посаженных за пишущие машинки, напечатают полное собрание сочинений Шекспира, или хотя бы одного «Гамлета»?«Обезьяний парадокс» переходит из одного философского трактата в другой. Странно, что никто не задался вопросом: может ли миллион людей, никогда о Шекспире не слыхавших, напечатать «Гамлета»? Отсюда недолго дойти до вопроса: а мог ли «Гамлета» написать сам Шекспир, если даже миллиону людей это не под силу? И применима ли вообще теория вероятности к этой категории явлений?Как видите, начав с вопроса о корреляциях между знаками в нуклеотидных последовательностях, мы пришли к проблеме философской, если хотите, гносеологической, затрагивающей коренные тайны мироздания.Еще в 1936 году Н. К. Кольцов писал, что вероятность случайного возникновения полипептида из 17 аминокислотных остатков (гептакайдекапептида) равна одной триллионной, и сделал из этого совершенно правильный вывод – гены синтезируются не заново, а матричным путем. Но как возникла первая матрица? Как говорила фонвизинская госпожа Простакова: «Один учился, другой учился – да первоет портной у кого учился?» Хватает ли времени на возникновение первого гена – протогена – случайным путем, стохастическим перебором нуклеотидов? Напомню, что солнечная система, Солнце со всеми планетами, сформировалась по самым последним оценкам 4,6 млрд. лет назад (плюс-минус 0,1 млрд.). Первые следы жизни на Земле имеют возраст более 3,8 млрд. лет. Добавлю и то, что значительный срок наша планета явно не годилась для возникновения жизни.Подобные соображения время от времени воскрешают гипотезу о внеземном, космическом происхождении жизни. Эта гипотеза (панспермии) была еще в прошлом веке выдвинута Сванте Аррениусом, и суть ее можно выразить так: в вечной и бесконечной Вселенной жизнь так же вечна и бесконечна. Споры, зародыши жизни, микроорганизмы могут покинуть родную планету и давлением света транспортироваться бог весть куда – от планеты к планете, от звезды к звезде. У нас к идее панспермии склонялся В. И. Вернадский.Мне эта гипотеза не очень нравится. Пусть во Вселенной, хотя бы в одной нашей Галактике, миллионы планет. Исчезающе малую вероятность возникновения жизни (т. е. протогена) на одной из них нужно умножить на столь же малую величину – вероятность благополучного межзвездного перелета. Это только видимость решения проблемы. Кроме того, похоже, что и Вселенной не хватает для возникновения жизни. Манфред Эйген подсчитал, что вероятность возникновения одного лишь белка – цитохрома С, состоящего примерно из ста аминокислотных остатков, равна 10-130, а во всей Вселенной хватает места лишь для 1074молекул (при условии, что все планеты, звезды и галактики состоят из вариантов молекул цитохрома).Как мы видим, положение все более драматизируется. Получается, что все мы живем вопреки теории вероятности, непрописанными во Вселенной. Нас не должно быть вообще!Выход из сложившегося положения попытался найти Френсис Крик, о котором я уже писал по другому поводу в предыдущей главе. В 1982 году он издал книгу «Жизнь, как она есть, ее происхождение и природа». К сожалению, на русский язык она не переведена, хотя я горячо рекомендовал ее для этого. И не потому, что разделяю его фантастическую гипотезу – как раз наоборот. По иронии судьбы я уже второй раз в этих очерках дискутирую с человеком – живым классиком молекулярной биологии, перед которым всегда преклонялся и преклоняюсь. Но «Amicus Plato sed magis amici veritas» – «Платон мне друг, но истина дороже». О чем же говорится в этой книге?Сначала Крик драматизирует положение. Он исходит из того, что первичный полипептид, кодируемый протогеном, имел 200 аминокислотных остатков, а не 100, как у Эйгена. Тогда вероятность его возникновения 10-260(это десятичная дробь с двумястами шестьюдесятью нулями после запятой). Далее, он напоминает, что и Вселенная, в том виде, в каком она есть, не вечна. Большинство космологов сейчас считает, что она продукт «Big Band» – «Большого взрыва», разметавшего все планеты, звезды и галактики, прежде сжатые в предельно малом (атомных размеров!) объеме.Когда произошел Большой взрыв? Прежние расчеты по скорости разбегания галактик и энергии реликтового радиоизлучения давали неточные и завышенные величины возраста Вселенной. Теперь он уточнен – по соотношению в звездах радиоактивного тория (период полураспада 14 млрд. лет) и стабильного неодима. Оказалось, что возраст самых старых звезд – не выше 11 млрд. лет. Значит, для возникновения жизни не хватает не только пространства, но и времени. Ведь Вселенная лишь вдвое старше солнечной системы.Крик тоже склоняется к неземному происхождению жизни. Но он физик и потому понимает слабости гипотезы панспермии. Конечно, давление солнечного света может придать споре микроорганизма третью космическую скорость – но оно же будет отталкивать от звезды «чужие» микрочастицы. За миллионолетние странствования гены неизбежно будут разрушены космическим излучением. Разумеется, споры могут быть экранированы от него, например, в метеоритах – но метеорит из-за большой массы не получит нужного ускорения давлением света. Да и вероятность того, что спора, ускоренная наугад, долетит до звезды с подходящими планетами, чересчур уж мала. Вероятность того, что выстрел вслепую со стратосферного лайнера поразит, например, белку в глаз, намного выше. Конечно, за большой промежуток времени может произойти и маловероятное событие. Но времени-то у нас как раз и не хватает.И Крик выдвигает гипотезу направленной, управляемой панспермии.Предположим, пишет он, на какой-то из многочисленных планет во Вселенной миллиарды лет назад возникла некая сверхцивилизация. Ее носители, убедившись в том, что жизнь штука редкая, возможно, уникальная, захотят распространить ее как можно шире (это утверждение мне не кажется обоснованным). С этой целью сверхцивилизация начинает рассылать по всем направлениям в свою и чужие галактики автоматические ракетные корабли. Двигаясь со скоростью хотя бы 0,0015% скорости света (3 мили в секунду) они в среднем за 1000 лет достигнут ближайших систем с планетами и рассеют в атмосфере последних пакеты с «пассажирами».Такими пассажирами могут быть лишь высушенные в замороженном состоянии микроорганизмы. Они перенесут сверхдлительный космический перелет и устойчивы к излучениям. Добавлю, что они устойчивы и к огромным ускорениям, так что эти гипотетические корабли могут набирать скорость самым экономичным путем, взрывным ускорением в сотни g . Если условия на поверхности новой планеты окажутся для них пригодными, начнется взрывное размножение – и последующая эволюция, вплоть до появления человека.А что значит – пригодные условия? Мы знаем микроорганизмы, живущие без кислорода, в горячей серной кислоте, использующие в качестве источника энергии серу и восстановленные металлы. Многие земные бактерии, похоже, отлично выживут на Марсе и хотя бы на полюсах Венеры. И Крик вспоминает старый спор между физиками-атомниками Энрико Ферми и Лео Сциллардом (он сам ушел из атомной физики после бомбы). Сциллард был горячим сторонником сверхцивилизаций, рассеянных по космосу, и скептик Ферми спросил его: «Если их много, почему мы их не видим и не слышим? Где же они?» И Крик полагает, что нашел ответ. Они – это мы, вернее, мы – их сверхотдаленные потомки. В будущем мы, возможно, подхватим эту эстафету (Крик подсчитывает, что даже современные наши космические корабли долетят до туманности Андромеды за 4 млрд. лет, когда от нашей цивилизации не останется даже праха).Любопытно, что у Крика есть предшественники. Он сам упоминает, что сходные мысли высказывал Дж. Б. С. Холдейн, удивительный человек с разностороннейшими знаниями – математик, физиолог, биохимик, генетик – и поэт в душе. В свою очередь могу назвать по крайней мере еще одного. Советский инженер и фантаст Г. Бабат выдвинул эту идею в послевоенные годы в неоконченном фантастическом романе «Потерянная Вселенная» (естественно, Крик не знал об этом).Вот вкратце основная идея написанной с блеском и эрудицией книги Френсиса Крика. Недаром редактор ее Карл Саган, ведущий американский космобиолог, назвал книгу «стимулирующей и провоцирующей, развлекающей и восхищающей». Да только обоснована ли она?Скажу прямо, доказательства космического происхождения жизни, выдвигаемые Криком и его многолетним сотрудником и соавтором Лесли Орджелом, немногочисленны и неубедительны. Первое из них – повышенное по сравнению со средней концентрацией для Земли содержание молибдена в живых организмах. Молибден входит в состав ряда ферментов, например, нитрогеназы микроорганизмов, связывающих атмосферный азот. Это ключевой фермент, делающий жизнь на Земле возможной. И Крик с Орджелом делают вывод: мы все эмигранты с богатой молибденом планеты. Но Морисабуро Эгами показал, что относительные единицы количества (кларки) для живой природы и морской воды по молибдену совпадают. Так что молибденовый след ведет не в космос, а в земной океан.Второй довод Крика – внезапное возникновение микроорганизмов 3,8 млрд. лет назад. Увы, этот довод в равной мере годится для всех форм жизни, включая человека. Внезапность – артефакт, обусловленный спецификой палеонтологической летописи. Она всегда констатирует широкое распространение формы («торжествующую обыденность»), а не процесс ее становления. Принцип телевидения и первые его успешные попытки известны с 20-х годов, но археологи будущего найдут первые обломки телевизоров, скорее всего, в слоях 50-х и ими датируют его внезапное возникновение.
1 2 3 4 5 6 7 8 9