Говоря, например, об изображении летающей тарелки в виде материальной точки, автор продолжает: «Любой конкретно мыслящий человек мог бы возразить, что такой подход совершенно нереалистичен; что мы пренебрегаем размерами, формой, материалом; что диаметр тарелки 30 метров, что она выкрашена в ярко-красный цвет и что на ней находится экипаж из трёх марсиан». И вот в целях согласования столь разных представлений и появляются такие понятия, как «идеальная модель», «абстракция», «идеальный объект», которые фиксируют то, что прагматически оправдано, но не укладывается в нашу картину мира.
Коллекторская программа требует согласованности, когерентности знания, её задача – всеобщий синтез и построение единой картины мира. Конечно, в основном она строит эту картину по частям, т. е. в пределах отдельных научных дисциплин, но наряду с этим мы постоянно наблюдаем попытки найти место каждой науки в системе знаний о мире в целом. Программа исследовательская, как мы уже отмечали, напротив, сугубо прагматична и оправдывает те или иные представления успехом в решении конкретных задач. И вот прагматическая установка неизбежно приходит в противоречие с требованием когерентности. Хороший пример приводит Галилео Галилей в одной из своих работ. Строители повсеместно возводят стены домов по отвесу, полагая, что два отвеса параллельны. Но мы-то знаем, что они пересекаются в центре Земли! Конечно, знаем, но какое это может иметь значение для практики строителей? Очевидно, что никакого.
Представление о реальной картине мира, с одной стороны, и об идеальных моделях или идеальных объектах, с другой, возникают как результат столкновения прагматизма и установки на когерентность знания. Эти представления можно рассматривать как своего рода защитный пояс прагматизма в его столкновении с требованием когерентности.
Глава 5.
Новации и их механизмы
Типы новаций в развитии науки
Как же выглядит динамика науки в свете изложенных представлений? Если учёный работает в традициях, если он запрограммирован, то как возникает новое? Ответ на этот вопрос надо искать прежде всего в многообразии традиций, в возможности их взаимодействия. Однако предварительно полезно уточнить, что именно мы понимаем под новациями в развитии науки, каков их характер, какие можно выделить типы новации и как эти типы связаны друг с другом.
Разнообразие новаций и их относительный характер
Наука – это очень сложное и многослойное образование, и она постоянно переживает множество разнообразных изменений. Нас, однако, не будут интересовать социально-организационные аспекты науки, её положение в обществе и т. д. Хотя, разумеется, организация академий или научных институтов – это тоже новации, но в рамках других подходов к исследованию научного познания. Философию науки в первую очередь интересует знание, его строение, способы его получения и организации. О новациях именно в этой области и пойдёт речь.
Надо сказать, что и при таких ограничениях мы имеем перед собой трудно обозримый по своему разнообразию объект исследования. Это и создание новых теорий, и возникновение новых научных дисциплин. Иногда эти две акции почти совпадают, как в случае квантовой механики, но можно назвать немало областей знания, которые не имеют своих собственных теорий. Новации могут состоять в построении новой классификации или периодизации, в постановке новых проблем, в разработке новых экспериментальных методов исследования или новых способов изображения. Очень часто, говоря о новациях, имеют в виду обнаружение новых явлений, но в этот класс с равным правом входят как сенсационные открытия типа открытия высокотемпературной сверхпроводимости, так и достаточно рядовые описания новых видов растений или насекомых.
К числу новаций следует причислить также введение новых понятий и новых терминов. Последний момент часто упускают из виду, явно его недооценивая. Однако нередко именно новый термин закрепляет в сознании научного сообщества принципиальную новизну тех явлений, которые до этого просто описывались, но не получали специальных обозначений. Вот что пишет по этому поводу революционер в области геоморфологии В. М. Дэвис: «Я хочу подчеркнуть тот факт, что „идея пенеплена“ принадлежит не мне. Я предложил только название, но, как часто бывает, введение определённого названия для явления, о котором до этого говорили только в общих выражениях, способствовало его признанию; свидетельством тому служит история термина „антецедентные“, обозначающего реки, которые сохраняют своё направление, прорезая поднимающиеся горные цепи. Идея антецедентных рек возникла у нескольких исследователей, которые не дали ей никакого названия, а безымённая, она не завоевала общего признания. Эта идея стала популярной только тогда, когда Поуэлл дал ей собственное имя».
В свете введённой выше модели можно попытаться разбить все новации на несколько групп в зависимости от того, с изменением каких наукообразующих программ они связаны. Можно говорить, например, об изменении исследовательских программ, включая сюда создание новых методов и средств исследования, и об изменении программ коллекторских, т. е. о постановке новых вопросов, об открытии или выделении новых явлений (новых объектов референции), о появлении новых способов систематизации знания. Но надо иметь в виду, что мы при этом упускаем из поля зрения основную массу новаций, которые, образно выражаясь, образуют повседневность науки. Это те новации, которые осуществляются в рамках существующих программ, ничего в них не меняя по существу, это, в частности, повседневное накопление знаний. Может быть, эту «повседневность» и не стоит специально рассматривать? Дело, однако, в том, что из таких повседневных актов и складывается развитие науки, включая и изменение научных программ. Более того, никогда нельзя заранее предсказать, к чему приведёт та или иная, казалось бы, вполне традиционная акция.
В этом последнем пункте мы сталкиваемся с явлением относительности новаций. Они относительны к последующему развитию науки. Впрочем, это касается не только научных новаций, но и новаций вообще. Говорят, что Колумб открыл Америку, но так ли это? Он искал западный путь в Индию, был, уверен, что таковой существует, и умер в сознании, что открыл то, что искал. Открытие Америки – это уже последующая интерпретация его деятельности. Или другой пример: вот растёт и развивается ребёнок, можно ли составить полный список тех изменений, которые при этом происходят? Перед нами непрерывный поток полностью невоспроизводимых событий, каждый день, каждый час и похож и не похож на предыдущие. Вероятно, надо попытаться выделить самое существенное, но критерием при этом является последующее развитие, которое будет вносить в наш выбор все новые и новые коррективы. Только потом, обнаружив у взрослого человека те или иные уже ярко выраженные качества, мы начинаем осознавать значение отдельных событий его детства.
Так и в науке: новации и здесь часто осознаются задним числом, осознаются тогда, когда мы ищем в прошлом истоки современных идей. Приведённые выше рассуждения В. М. Дэвиса дают тому прекрасный пример. Можно ли считать новацией описание антецедентных рек до того, как был введён соответствующий термин? Ведь научное сообщество не реагировало на это как на нечто новое. Но, когда термин введён и принят, мы понимаем, что идеи были уже высказаны до этого, что они были новыми и значимыми. Иными словами, выделение новаций – это дело Суда Истории. Люди действуют в традициях, История делает их новаторами. Но и Суд Истории способен изменить своё мнение.
Новые методы и новые миры
Рассмотрим два типа новаций, один из которых связан с развитием исследовательских, а другой – коллекторских программ. Первый – это появление новых методов, второй – открытие новых миров, новых объектов исследования. Оба типа новаций могут приводить к существенным сдвигам в развитии науки и воспринимаются в этом случае как революции. Факты свидетельствуют, что эти новации тесно связаны друг с другом, что иллюстрирует и связь исследовательских и коллекторских программ.
Новые методы, как отмечают сами учёные, часто приводят к далеко идущим последствиям – и к смене проблем, и к смене стандартов научной работы, и к появлению новых областей знания. Укажем хотя бы очевидные примеры: появление микроскопа в биологии, оптического телескопа и радиотелескопа в астрономии, методов «воздушной археологии»ѕ
Изобретение микроскопа и распространение его в ХVII веке с самого начала будоражило воображение современников. Хотя приборы были очень несовершенны, это было окно для наблюдения живой природы, которое позволило первым великим микроскопистам – Гуку, Грю, Левенгуку, Мальпиги – сделать их бессмертные открытия. Оглядываясь на ХVII век, известный историк биологии В. В. Лункевич назвал его эпохой «завоеваний микроскопа». Он даёт выразительный портрет психологического состояния Роберта Гука, охваченного ажиотажем новых исследований:"Нужно только представить себе человека умного, образованного, любознательного и темпераментного во всеоружии первого микроскопа, т. е. инструмента, которым почти никто до него не пользовался и который даёт возможность открыть совершенно новый, никем до того не виданный и никому не ведомый мир; нужно только перевоплотиться в такого человека, чтобы не только представить себе ясно, но и почувствовать и настроение Гука, и торопливую пестроту его наблюдений. Он бросался на все, что можно поместить на столик, под объектив микроскопа; пусть это будет кончик тоненькой иглы или острие бритвы, шерстяная, льняная или шёлковая нить, крошечные стеклянные шарики, радугой играющие под линзой микроскопа, частички тонкого песка, осадок в моче, зола растений или кристаллики различных минералов – не важно: все это ново, интересно, полно неожиданностей, чревато возможностью засыпать мир тысячью маленьких открытий" На все это можно посмотреть и в более широком, принципиальном плане: разве нельзя всю историю биологии разбить на два этапа, разделённые появлением и внедрением микроскопа? Без микроскопа не было бы целых больших и фундаментальных разделов биологии (микробиологии, цитологии, гистологии), во всяком случае в том виде, как они сейчас существуют. Очевидно, что появление микроскопа привело и к открытию новых миров.
Нечто аналогичное происходило и в геологии. Во второй половине Х1Х столетия применение микроскопа для исследования горных пород приводит к революционным изменениям в петрографии. Вот как этот решительный сдвиг описывает выдающийся русский петрограф Ф. Ю. Левинсон-Лессинг в 1916 г.:"В зависимости от введения новых методов исследования или усовершенствования прежних и от успехов сопредельных областей знания, все отрасли естествознания XIX столетия эволюционировали и продолжают эволюционировать. Вместе с приёмами исследования расширяются и те проблемы, которые ставит себе данная наука, или появляются новые перспективы, возникают новые задачи, – и физиономия науки постепенно видоизменяется: то, что недавно ещё было новым, оказывается уже устаревшим и заменяется новыми воззрениями, которых ожидает та же судьба. Этот процесс развития совершается в общем постепенно, но бывают моменты быстрого движения вперёд, как бы скачки, аналогично явлению сальтации в общем процессе медленной эволюции органического мира. Таким значительным скачком в петрографии явилось введение микроскопического метода исследования. Быть может, нет другой науки, в которой можно было бы указать такой резкий перелом, как тот, который совершился в начале шестидесятых годов прошлого столетия в петрографии". Нетрудно видеть, что речь идёт не только о революции в петрографии, которую Левинсон-Лессинг оценивает как столь резкий перелом, что ему нет равных в других науках, – вопрос ставится шире: всю эволюцию естествознания XIX столетия автор ставит в зависимости от развития и усовершенствования методов исследования.
Во второй половине XX столетия начинается бурный подъём астрономии, связанный с появлением радиотелескопа. Для астрофизиков ситуация обновления очевидна. «Революция в астрономии началась примерно в 1950 году и с тех пор её триумфальное шествие не прекращается», – считает американский астрофизик П. Ходж. Аналогичная оценка – у академика В. Л. Гинзбурга: «Астрономия после второй мировой войны вступила в период особенно блистательного развития, в период „второй астрономической революции“ (первая такая революция связывается с именем Галилея, начавшего использовать телескопы)ѕ Содержание второй астрономической революции можно видеть в процессе превращения астрономии из оптической во всеволновую». И здесь, как видите, периодизация связана с методами эмпирического исследования: первая революция – оптический телескоп, вторая – радиотелескоп.
Перейдём к археологии. Один из самых смелых шагов был сделан ею во время первой мировой войны: шаг, который позволил археологу, как говорится, стать птицей – благодаря аэроплану и аэрофотосъёмке, что привело к целому ряду необычных открытий и важных обобщений. С высоты открылись такие следы прошлого, наблюдать которые не могли и мечтать самые прозорливые наземные исследователи. Известный английский археолог и востоковед Лео Дойель пишет: «Воздушная археология революционизировала науку изучения древностей, может быть, даже в большей степени, чем открытие радиоуглеродного метода датировки. По словам одного из её основателей вклад, внесённый воздушной разведкой в археологические изыскания, можно сравнить с изобретением телескопа в астрономии». Здесь опять подчёркивается революционизирущая роль новых методов: радиоуглеродный метод датировки, методы аэрофотосъёмки.
У нас нет возможности увеличивать количество примеров, но очевидно, что речь должна идти не только о методах наблюдения или эксперимента, но обо всем арсенале методических средств вообще. Не меньшее значение, например, могут иметь методы обработки и систематизации эмпирических данных – вспомним хотя бы роль картографии для наук о Земле или роль статистических методов в социальных исследованиях. Огромное революционизирующее значение имеет и развитие чисто теоретических методов – например, перевод естествознания на язык математического анализа. Здесь надо вспомнить не только труды Ньютона, но и кропотливую работу Эйлера, Лагранжа, Гамильтона и др. Без этой двухвековой подготовки невозможна была бы и эйнштейновская научная революция. Вообще проникновение математических методов в новые области науки всегда приводит к их революционной перестройке, к изменению стандартов работы, характера проблем и самого стиля мышления.
Но главное, что бросается в глаза и что хотелось бы подчеркнуть, – если в нарисованной Т. Куном глобальной картине узловыми точками являются новые теоретические концепции, то в такой же степени можно организовать весь материал истории науки, включая и естествознание, и науки об обществе, вокруг принципиальных скачков в развитии методов. Качественная перестройка методического арсенала – это своеобразная координатная сетка, не менее удобная, чем перечень куновских парадигм.
Перейдём теперь к фактам другого типа. Обычно, характеризуя ту или иную науку, мы прежде всего интересуемся тем, что именно она изучает. Это не случайно. Выделение границ изучаемой области или, иными словами, задание объекта исследования – это, как мы уже отмечали, достаточно существенный наукообразующий параметр. Не удивительно, что возникновение новых дисциплин очень часто связано как раз с обнаружением каких-то ранее неизвестных сфер или аспектов действительности. Не вызывает сомнений, что это тоже своеобразные научные революции, которые мы и будем называть открытием новых миров. Перед исследователем в силу тех или иных обстоятельств открывается новая область непознанного, мир новых объектов и явлений, у которых нет ещё даже имени. Далее в ход идёт весь арсенал уже имеющихся средств, методов, теоретических представлений, исследовательских программ. Новой является сама область познания.
Простейший пример – Великие Географические открытия, когда перед изумлёнными путешественниками представали новые земли, акватории, ландшафты, неведомые культуры. Нельзя недооценивать роль этих открытий в истории европейской науки. Но не менее, а, может быть, и более значимо появление в сфере научного изучения таких объектов, как мир микроорганизмов и вирусов, мир атомов и молекул, мир электромагнитных явлений, мир элементарных частиц. Список такого рода можно расширить и сделать более детальным.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
Коллекторская программа требует согласованности, когерентности знания, её задача – всеобщий синтез и построение единой картины мира. Конечно, в основном она строит эту картину по частям, т. е. в пределах отдельных научных дисциплин, но наряду с этим мы постоянно наблюдаем попытки найти место каждой науки в системе знаний о мире в целом. Программа исследовательская, как мы уже отмечали, напротив, сугубо прагматична и оправдывает те или иные представления успехом в решении конкретных задач. И вот прагматическая установка неизбежно приходит в противоречие с требованием когерентности. Хороший пример приводит Галилео Галилей в одной из своих работ. Строители повсеместно возводят стены домов по отвесу, полагая, что два отвеса параллельны. Но мы-то знаем, что они пересекаются в центре Земли! Конечно, знаем, но какое это может иметь значение для практики строителей? Очевидно, что никакого.
Представление о реальной картине мира, с одной стороны, и об идеальных моделях или идеальных объектах, с другой, возникают как результат столкновения прагматизма и установки на когерентность знания. Эти представления можно рассматривать как своего рода защитный пояс прагматизма в его столкновении с требованием когерентности.
Глава 5.
Новации и их механизмы
Типы новаций в развитии науки
Как же выглядит динамика науки в свете изложенных представлений? Если учёный работает в традициях, если он запрограммирован, то как возникает новое? Ответ на этот вопрос надо искать прежде всего в многообразии традиций, в возможности их взаимодействия. Однако предварительно полезно уточнить, что именно мы понимаем под новациями в развитии науки, каков их характер, какие можно выделить типы новации и как эти типы связаны друг с другом.
Разнообразие новаций и их относительный характер
Наука – это очень сложное и многослойное образование, и она постоянно переживает множество разнообразных изменений. Нас, однако, не будут интересовать социально-организационные аспекты науки, её положение в обществе и т. д. Хотя, разумеется, организация академий или научных институтов – это тоже новации, но в рамках других подходов к исследованию научного познания. Философию науки в первую очередь интересует знание, его строение, способы его получения и организации. О новациях именно в этой области и пойдёт речь.
Надо сказать, что и при таких ограничениях мы имеем перед собой трудно обозримый по своему разнообразию объект исследования. Это и создание новых теорий, и возникновение новых научных дисциплин. Иногда эти две акции почти совпадают, как в случае квантовой механики, но можно назвать немало областей знания, которые не имеют своих собственных теорий. Новации могут состоять в построении новой классификации или периодизации, в постановке новых проблем, в разработке новых экспериментальных методов исследования или новых способов изображения. Очень часто, говоря о новациях, имеют в виду обнаружение новых явлений, но в этот класс с равным правом входят как сенсационные открытия типа открытия высокотемпературной сверхпроводимости, так и достаточно рядовые описания новых видов растений или насекомых.
К числу новаций следует причислить также введение новых понятий и новых терминов. Последний момент часто упускают из виду, явно его недооценивая. Однако нередко именно новый термин закрепляет в сознании научного сообщества принципиальную новизну тех явлений, которые до этого просто описывались, но не получали специальных обозначений. Вот что пишет по этому поводу революционер в области геоморфологии В. М. Дэвис: «Я хочу подчеркнуть тот факт, что „идея пенеплена“ принадлежит не мне. Я предложил только название, но, как часто бывает, введение определённого названия для явления, о котором до этого говорили только в общих выражениях, способствовало его признанию; свидетельством тому служит история термина „антецедентные“, обозначающего реки, которые сохраняют своё направление, прорезая поднимающиеся горные цепи. Идея антецедентных рек возникла у нескольких исследователей, которые не дали ей никакого названия, а безымённая, она не завоевала общего признания. Эта идея стала популярной только тогда, когда Поуэлл дал ей собственное имя».
В свете введённой выше модели можно попытаться разбить все новации на несколько групп в зависимости от того, с изменением каких наукообразующих программ они связаны. Можно говорить, например, об изменении исследовательских программ, включая сюда создание новых методов и средств исследования, и об изменении программ коллекторских, т. е. о постановке новых вопросов, об открытии или выделении новых явлений (новых объектов референции), о появлении новых способов систематизации знания. Но надо иметь в виду, что мы при этом упускаем из поля зрения основную массу новаций, которые, образно выражаясь, образуют повседневность науки. Это те новации, которые осуществляются в рамках существующих программ, ничего в них не меняя по существу, это, в частности, повседневное накопление знаний. Может быть, эту «повседневность» и не стоит специально рассматривать? Дело, однако, в том, что из таких повседневных актов и складывается развитие науки, включая и изменение научных программ. Более того, никогда нельзя заранее предсказать, к чему приведёт та или иная, казалось бы, вполне традиционная акция.
В этом последнем пункте мы сталкиваемся с явлением относительности новаций. Они относительны к последующему развитию науки. Впрочем, это касается не только научных новаций, но и новаций вообще. Говорят, что Колумб открыл Америку, но так ли это? Он искал западный путь в Индию, был, уверен, что таковой существует, и умер в сознании, что открыл то, что искал. Открытие Америки – это уже последующая интерпретация его деятельности. Или другой пример: вот растёт и развивается ребёнок, можно ли составить полный список тех изменений, которые при этом происходят? Перед нами непрерывный поток полностью невоспроизводимых событий, каждый день, каждый час и похож и не похож на предыдущие. Вероятно, надо попытаться выделить самое существенное, но критерием при этом является последующее развитие, которое будет вносить в наш выбор все новые и новые коррективы. Только потом, обнаружив у взрослого человека те или иные уже ярко выраженные качества, мы начинаем осознавать значение отдельных событий его детства.
Так и в науке: новации и здесь часто осознаются задним числом, осознаются тогда, когда мы ищем в прошлом истоки современных идей. Приведённые выше рассуждения В. М. Дэвиса дают тому прекрасный пример. Можно ли считать новацией описание антецедентных рек до того, как был введён соответствующий термин? Ведь научное сообщество не реагировало на это как на нечто новое. Но, когда термин введён и принят, мы понимаем, что идеи были уже высказаны до этого, что они были новыми и значимыми. Иными словами, выделение новаций – это дело Суда Истории. Люди действуют в традициях, История делает их новаторами. Но и Суд Истории способен изменить своё мнение.
Новые методы и новые миры
Рассмотрим два типа новаций, один из которых связан с развитием исследовательских, а другой – коллекторских программ. Первый – это появление новых методов, второй – открытие новых миров, новых объектов исследования. Оба типа новаций могут приводить к существенным сдвигам в развитии науки и воспринимаются в этом случае как революции. Факты свидетельствуют, что эти новации тесно связаны друг с другом, что иллюстрирует и связь исследовательских и коллекторских программ.
Новые методы, как отмечают сами учёные, часто приводят к далеко идущим последствиям – и к смене проблем, и к смене стандартов научной работы, и к появлению новых областей знания. Укажем хотя бы очевидные примеры: появление микроскопа в биологии, оптического телескопа и радиотелескопа в астрономии, методов «воздушной археологии»ѕ
Изобретение микроскопа и распространение его в ХVII веке с самого начала будоражило воображение современников. Хотя приборы были очень несовершенны, это было окно для наблюдения живой природы, которое позволило первым великим микроскопистам – Гуку, Грю, Левенгуку, Мальпиги – сделать их бессмертные открытия. Оглядываясь на ХVII век, известный историк биологии В. В. Лункевич назвал его эпохой «завоеваний микроскопа». Он даёт выразительный портрет психологического состояния Роберта Гука, охваченного ажиотажем новых исследований:"Нужно только представить себе человека умного, образованного, любознательного и темпераментного во всеоружии первого микроскопа, т. е. инструмента, которым почти никто до него не пользовался и который даёт возможность открыть совершенно новый, никем до того не виданный и никому не ведомый мир; нужно только перевоплотиться в такого человека, чтобы не только представить себе ясно, но и почувствовать и настроение Гука, и торопливую пестроту его наблюдений. Он бросался на все, что можно поместить на столик, под объектив микроскопа; пусть это будет кончик тоненькой иглы или острие бритвы, шерстяная, льняная или шёлковая нить, крошечные стеклянные шарики, радугой играющие под линзой микроскопа, частички тонкого песка, осадок в моче, зола растений или кристаллики различных минералов – не важно: все это ново, интересно, полно неожиданностей, чревато возможностью засыпать мир тысячью маленьких открытий" На все это можно посмотреть и в более широком, принципиальном плане: разве нельзя всю историю биологии разбить на два этапа, разделённые появлением и внедрением микроскопа? Без микроскопа не было бы целых больших и фундаментальных разделов биологии (микробиологии, цитологии, гистологии), во всяком случае в том виде, как они сейчас существуют. Очевидно, что появление микроскопа привело и к открытию новых миров.
Нечто аналогичное происходило и в геологии. Во второй половине Х1Х столетия применение микроскопа для исследования горных пород приводит к революционным изменениям в петрографии. Вот как этот решительный сдвиг описывает выдающийся русский петрограф Ф. Ю. Левинсон-Лессинг в 1916 г.:"В зависимости от введения новых методов исследования или усовершенствования прежних и от успехов сопредельных областей знания, все отрасли естествознания XIX столетия эволюционировали и продолжают эволюционировать. Вместе с приёмами исследования расширяются и те проблемы, которые ставит себе данная наука, или появляются новые перспективы, возникают новые задачи, – и физиономия науки постепенно видоизменяется: то, что недавно ещё было новым, оказывается уже устаревшим и заменяется новыми воззрениями, которых ожидает та же судьба. Этот процесс развития совершается в общем постепенно, но бывают моменты быстрого движения вперёд, как бы скачки, аналогично явлению сальтации в общем процессе медленной эволюции органического мира. Таким значительным скачком в петрографии явилось введение микроскопического метода исследования. Быть может, нет другой науки, в которой можно было бы указать такой резкий перелом, как тот, который совершился в начале шестидесятых годов прошлого столетия в петрографии". Нетрудно видеть, что речь идёт не только о революции в петрографии, которую Левинсон-Лессинг оценивает как столь резкий перелом, что ему нет равных в других науках, – вопрос ставится шире: всю эволюцию естествознания XIX столетия автор ставит в зависимости от развития и усовершенствования методов исследования.
Во второй половине XX столетия начинается бурный подъём астрономии, связанный с появлением радиотелескопа. Для астрофизиков ситуация обновления очевидна. «Революция в астрономии началась примерно в 1950 году и с тех пор её триумфальное шествие не прекращается», – считает американский астрофизик П. Ходж. Аналогичная оценка – у академика В. Л. Гинзбурга: «Астрономия после второй мировой войны вступила в период особенно блистательного развития, в период „второй астрономической революции“ (первая такая революция связывается с именем Галилея, начавшего использовать телескопы)ѕ Содержание второй астрономической революции можно видеть в процессе превращения астрономии из оптической во всеволновую». И здесь, как видите, периодизация связана с методами эмпирического исследования: первая революция – оптический телескоп, вторая – радиотелескоп.
Перейдём к археологии. Один из самых смелых шагов был сделан ею во время первой мировой войны: шаг, который позволил археологу, как говорится, стать птицей – благодаря аэроплану и аэрофотосъёмке, что привело к целому ряду необычных открытий и важных обобщений. С высоты открылись такие следы прошлого, наблюдать которые не могли и мечтать самые прозорливые наземные исследователи. Известный английский археолог и востоковед Лео Дойель пишет: «Воздушная археология революционизировала науку изучения древностей, может быть, даже в большей степени, чем открытие радиоуглеродного метода датировки. По словам одного из её основателей вклад, внесённый воздушной разведкой в археологические изыскания, можно сравнить с изобретением телескопа в астрономии». Здесь опять подчёркивается революционизирущая роль новых методов: радиоуглеродный метод датировки, методы аэрофотосъёмки.
У нас нет возможности увеличивать количество примеров, но очевидно, что речь должна идти не только о методах наблюдения или эксперимента, но обо всем арсенале методических средств вообще. Не меньшее значение, например, могут иметь методы обработки и систематизации эмпирических данных – вспомним хотя бы роль картографии для наук о Земле или роль статистических методов в социальных исследованиях. Огромное революционизирующее значение имеет и развитие чисто теоретических методов – например, перевод естествознания на язык математического анализа. Здесь надо вспомнить не только труды Ньютона, но и кропотливую работу Эйлера, Лагранжа, Гамильтона и др. Без этой двухвековой подготовки невозможна была бы и эйнштейновская научная революция. Вообще проникновение математических методов в новые области науки всегда приводит к их революционной перестройке, к изменению стандартов работы, характера проблем и самого стиля мышления.
Но главное, что бросается в глаза и что хотелось бы подчеркнуть, – если в нарисованной Т. Куном глобальной картине узловыми точками являются новые теоретические концепции, то в такой же степени можно организовать весь материал истории науки, включая и естествознание, и науки об обществе, вокруг принципиальных скачков в развитии методов. Качественная перестройка методического арсенала – это своеобразная координатная сетка, не менее удобная, чем перечень куновских парадигм.
Перейдём теперь к фактам другого типа. Обычно, характеризуя ту или иную науку, мы прежде всего интересуемся тем, что именно она изучает. Это не случайно. Выделение границ изучаемой области или, иными словами, задание объекта исследования – это, как мы уже отмечали, достаточно существенный наукообразующий параметр. Не удивительно, что возникновение новых дисциплин очень часто связано как раз с обнаружением каких-то ранее неизвестных сфер или аспектов действительности. Не вызывает сомнений, что это тоже своеобразные научные революции, которые мы и будем называть открытием новых миров. Перед исследователем в силу тех или иных обстоятельств открывается новая область непознанного, мир новых объектов и явлений, у которых нет ещё даже имени. Далее в ход идёт весь арсенал уже имеющихся средств, методов, теоретических представлений, исследовательских программ. Новой является сама область познания.
Простейший пример – Великие Географические открытия, когда перед изумлёнными путешественниками представали новые земли, акватории, ландшафты, неведомые культуры. Нельзя недооценивать роль этих открытий в истории европейской науки. Но не менее, а, может быть, и более значимо появление в сфере научного изучения таких объектов, как мир микроорганизмов и вирусов, мир атомов и молекул, мир электромагнитных явлений, мир элементарных частиц. Список такого рода можно расширить и сделать более детальным.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55