А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Так во всяком случае и считают Стивен Хокинг и его последователи. Но прежде чем мы углубимся в устройство подобных «туннелей времени», надо, наверное, сказать несколько слов и о самом Хокинге. Уж больно неординарная это фигура даже для нашего времени, которое, кажется, уже отучило нас удивляться.
…Недавно в Кембридже состоялось не совсем обычное торжество. Профессора и студенты знаменитого Тринити-колледжа – того самого, где профессором был когда-то сам сэр Исаак Ньютон, – пением и аплодисментами приветствовали человека, неподвижно сидевшего в инвалидной коляске.
Человек в коляске был нем и недвижим. Тем не менее именно он сегодня занимает ту кафедру, которую когда-то занимал Ньютон, читает лекции студентам, создает новые книги и научные гипотезы, в том числе наиболее «безумные», а значит, и чрезвычайно интересные.
Беда постигла Стивена Хокинга в юности, когда он учился на первом курсе колледжа. Неизлечимая болезнь практически обездвижила все тело, а неудачная операция привела вдобавок еще и к тому, что Хокинг онеменел. И тем не менее он не сдался.
В какой-то мере Хокингу помогает современная техника. Коляска с электроприводом позволяет ему передвигаться самостоятельно, а расположенный под сиденьем кресла компьютер с синтезатором речи дает ему возможность говорить.
Стивен Хокинг сумел не только закончить колледж, но и стать профессором, написать несколько книг. Одна из последних называется «От Большого взрыва до черных дыр». На ней мы и остановимся более подробно.
Она представляет собой относительно небольшую (200 страниц)
научно-популярную работу, в которой описаны все космологические
теории и гипотезы последнего времени.
– Издатель сказал мне, что каждая новая формула будет со кращать число читателей вдвое, – сказал Хокинг. Поэтому в книге всего одна формула – это знаменитое эйнштейновское уравнение

Е = mc2.

Все остальное я постарался изложить как можно более доступным языком…
И надо сказать, что попытка популяризации Хокингу вполне удалась. В своей книге он рассказывает о гипотезе Большого Взрыва, согласно которой вся наша Вселенная когда-то образовалась из одной-единственной сингулярной точки.
По неведомой пока нам причине в один прекрасный миг эта точка взорвалась, и с той поры ее вещество все время расширяется, преобразуясь по дороге. Затем, как полагают многие ученые, большой маятник Вселенной качнется в обратную сторону – расширение может смениться сжатием до новой сингулярной точки. Таким образом, наша Вселенная должна иметь начало и конец.
Однако Хокинг с такой точкой зрения не согласен. Он полагает, что она чересчур пессимистична, поэтому ввел в науку новое понятие – воображаемое время. Используя это понятие, Хокинг создал модель такой Вселенной, у которой нет ни начала ни конца.
«Представьте себе движение по воображаемому шару, – пишет Хокинг. – Вы начали движение по нему с северного полюса и постепенно движетесь к югу, все время меняя широту места…»
Говоря иначе, Хокинг своими словами пересказывает ту притчу о плоскостном мире, с которой мы уже познакомились. Но рассматривает он ее применительно к нашему трехмерному (или, если угодно, четырехмерному) миру и приходит в конце концов к неожиданному выводу.
«По мере движения, – продолжает он свой рассказ, – широта места, т. е. длина окружности, будет возрастать, а потом, когда вы перевалите экватор, начнет сокращаться, пока не превратится в нуль. Что это – точка сингулярности?.. Нет, ведь если вы продолжите движение, то широта снова станет возрастать…»
Конечно, все сказанное выглядит весьма схематично. На самом деле мир устроен, наверное, значительно сложнее. Однако в том и есть один из талантов Хокинга – говорить о сложных вещах или емкими, точными формулами, или просто наглядными образами.
Он ввел понятие воображаемого времени, которое не имеет никакой связи с настоящим физическим временем, однако оказалось весьма удобным для описания многих процессов космологии.
Теория воображаемого времени – продолжение работы Хокинга над теорией «черных дыр». Когда он впервые познакомился с феноменом «черных дыр», введенным в обиход профессором Роджером Пенроузом, то был весьма поражен, что «черная дыра» – это такое место во Вселенной, откуда из-за чрезвычайно сильного тяготения, а значит, и искривления пространства не вырывается ничто: ни элементарная частица, ни луч света… «Получается, что „черная дыра“ ничего не излучает в пространство, а посему может быть совершенно незаметна, – сказал сам себе Хокинг. – Но разве так бывает?..»
И он-таки нашел возможность доказать, что «черная дыра» может посылать в пространство некое излучение, радиацию, которую теперь так и называют – радиация Хокинга.
«Представьте себе, что поверхность шара, по которому мы. только что двигались, вибрирует, – продолжает свои рассуждения Стивен Хокинг. – Эта вибрация едва заметна, ее величина 10-23 см, то есть в 10-20 меньше, чем диаметр протона. Но тем не менее этой величины вполне достаточно, чтобы поверхность шара претерпевала изменения, а значит, от него в пространстве распространялись некие волны излучения…»
Говоря иначе, Хокинг с другой стороны подошел к теории замкнутой или почти замкнутой Вселенной. Он попытался объединить два понятия, существовавших до того раздельно, – фридмоны и «черные дыры». Это объединение повлекло за собой далеко идущие последствия, к рассказу которых мы сейчас и перейдем.


Теория «червячных дыр»

Представьте себе тот же шар, который мы использовали в своих аналогиях уже неоднократно. По поверхности этого шара ползают все те же плоскостники-двухмерники. Понятно, что для того, чтобы попасть из точки А в точку В на поверхности шара, они должны преодолеть некий путь по дуге. И вот некий гений местного масштаба однажды все-таки сумел сообразить не только то, что движение по поверхности шара происходит по дуге, но и то, как этот путь можно спрямить. Не берусь рассказать обо всем ходе и логике рассуждений «двухмерника», в нашем же трехмерно-четырехмерном мире это можно показать на простейшей аналогии.
На яблоке поселился червяк. Вместо того чтобы передвигаться из одной точки в другую по поверхности яблока, он просто прогрызает ходы-червоточины. Так путь по дуге превращается в более короткий путь по хорде.
Оказывается, подобные «червоточины» вполне могут существовать и в окружающей нас Вселенной. Чтобы понять, как это может быть, давайте несколько отступим по времени назад и расположим события в их логической последовательности.
Как известно, суть гравитации, открытой И. Ньютоном в 1687 году, заключается в том, что два тела, обладающих некой массой, испытывают взаимное притяжение. Сила притяжения зависит от расстояния между телами. А это, в свою очередь, позволяет выдвинуть следующее предположение: если одно из тел меняет свое положение, меняется и сила притяжения, которое оно оказывает на другое тело.
Причем гравитационные эффекты протекают, со скоростью, значительно большей, чем скорость света. Это на сегодняшний день известно точно: если солнечный луч движется к нам 8 мин, то стоит Солнцу чуть изменить свое положение, как Земля чувствует изменение гравитационного поля немедленно.
Как же тогда примирить эту особенность с теорией Эйнштейна, которая утверждает, что именно скорость света есть абсолютно непреодолимый предел скорости? Сам Эйнштейн попытался найти решение этой проблемы в рамках общей теории относительности.
Суть ее для данного случая заключается в том, что согласно предположению Эйнштейна пространство не «плоское», как полагали раньше, а «изогнутое», деформированное под воздействием распределенных в нем массы и энергии.
Говоря другими словами, это означает, что наше трехмерное пространство загибается в некое четвертое измерение, подобно тому как двухмерный лист бумаги, если его скрутить, загибается в третье измерение.
Последствия этой теории не до конца осознаны и в наши дни. Пространство и время потеряли свой абсолютный характер и, как мы уже говорили, уступили место новому понятию «пространства-времени». Изменения, вносимые при этом в наши геометрические понятия, одновременно носят и количественный и качественный характер.
Количественный – потому, что отныне необходимо учитывать искривленность пространства и времени, а это предполагает, к примеру, что сумма углов треугольника не обязательно должна быть равна 180° (пространственная геометрия Лобачевского), а прямые параллельные линии согласно той же геометрии в некоторых случаях могут и пересекаться.
Качественный – в основном потому, что становится возможным соединить две точки совершенно различными способами, не имеющими друг с другом пространственно-временной связи. Именно на этих неожиданных путях вселенские «червяки» и прогрызают свои необыкновенные «дыры».
Чтобы яснее понять, что же знаменуют собой те «различные способы», которыми можно соединить две точки, обратимся к наглядному примеру, приводимому, тем же Стивеном Хокингом в его новой книге «Короткая история времени».
Понаблюдаем за самолетом, летящим над пересеченной местностью, предлагает нам английский ученый. Его траектория в небе – прямая линия в трехмерном пространстве. А вот тень его следует по изогнутой траектории – в зависимости от рельефа – в двухмерном пространстве.
Точно так же Земля движется вокруг Солнца по прямой траектории в четырехмерном пространстве (три классических пространственных измерения плюс четвертая координата – время). А вот в трехмерном пространстве отображение нашей планеты перемещается по изогнутой траектории – эллипсу, примерно так же, как движется по какой-то кривой тень самолета.
Из всего этого следует, что при помощи «червячной дыры», проходящей через четвертое пространственное измерение, можно изрядно сократить себе путь как в пространстве,, так и во времени.
Существование таких кратчайших путей было предсказано теоретиками еще в 1916 году, но только двадцать лет спустя, когда Эйнштейн совместно с Розеном взялся за анализ своих же уравнений, была выдвинута достаточно проработанная гипотеза о неком «мосте», который может связывать две точки более коротким путем, чем общепринято. Эта гипотеза получила название «мост Эйнштейна – Розена».
И вот в конце 50-х годов Джон Уилер впервые ясно обрисовал, где именно эти «мосты» в нашей Вселенной могут быть наведены. Ему же принадлежит и название «червячные дыры» по известной аналогии с ходами, проделываемыми плодовым червяком. Итак, согласно Уилеру, «червячные ходы», скорее всего, могут возникать в тех районах Вселенной, где пространство сильно изогнуто. То есть, говоря иначе, в районах, где существуют те самые «черные дыры», о которых мы уже говорили.
При этом, однако, Уилер и его последователи получили поначалу не слишком обнадеживающую картину. Во-первых, было неясно, как именно могла бы появиться «червоточина» – теория не находила механизмов для ее образования. Во-вторых, получалось, что два входа «червоточины» – теоретики назвали их «ртами» – могут сообщаться между собой весьма незначительное время. Не успеет «червоточина» появиться, как канал или «глотка», соединяющая оба «рта», тотчас должна мгновенно стянуться, давая в итоге две не сообщающиеся между собой «черные дыры».
Таким образом, сконструированные теоретиками «червоточины» показались им нежизнеспособными, и интерес к космическим туннелям вскоре угас.


Путешествия по «червоточине»

Интерес к «червоточинам» возродился всего несколько лет назад, когда известный американский астрофизик Кип Торн при участии своих сотрудников и учеников решил вновь заняться этой проблемой. Говорят, одним из толчков к исследованию послужила просьба, адресованная Торну его коллегой и приятелем, известным ученым Карлом Саганом. Саган на сей раз решил выступить в несвойственной ему роли и написал научно-фантастический роман «Контакт», действие которого происходит как раз в туннеле-«червоточине».
Чтобы придать правдоподобие выдумке своего приятеля, Торн и решил посмотреть, каким образом «червоточину» можно уберечь от мгновенного разрушения. Для начала исследователи попробовали укрепить стенки туннеля некой «экзотической материей».
Материя должна быть действительно на редкость экзотической: она должна выдерживать давления в миллиарды миллиардов атмосфер да при этом еще и обладать, как показывают расчеты, отрицательной… массой – явлением еще не известным в физике.
Однако тем не менее «строительство» продолжалось. Чтобы сделать «червоточину» пригодной для передвижения астронавтов, в транспортный туннель поместили вакуумную трубу. Было предложено и еще одно решение: ученые наделили экзотическую материю такими свойствами, чтобы она не взаимодействовала с обычным веществом. Теперь астронавты могли двигаться сквозь туннель, вовсе не ощущая сопротивления.
Работая с «червоточинами», Торн попытался теоретически обосновать и еще одну идею, ранее обсуждавшуюся применительно к «черным дырам». Эта идея – путешествие во времени. Согласно расчетам получается, что в принципе можно если не запустить ракету, которая прилетит вчера, то по крайней мере по прилете увидеть хвост своего собственного стартующего корабля.
Ну а если заниматься не подобными «фокусами», а чем-либо более серьезным, то с помощью такого приема можно будет отправиться в прошлое. Правда, и тут есть свои сложности. Сложность первая: чтобы сместиться в прошлое, скажем на тысячу лет, придется предварительно двигать «рот» около столетия со скоростью, сравнимой с околосветовой. Сложность вторая и, пожалуй, главная – это возможное нарушение принципа причинности. Следствие в данном случае может повлиять на причину, и никто не знает, чем все это может кончиться…
Ну а чтобы вы не печалились заранее, скажем, что сам Кип Торн весьма расстроен тем шумом, который подняли вокруг его гипотез досужие журналисты. Это ведь всего лишь рабочая гипотеза, в которой сам ученый не видит ничего особенно необычного.
«Пока мы не знаем всех физических законов, на основе которых могут (или не могут) возникать и функционировать космические „червоточины“, – говорил он. – И в то же время известные законы их не запрещают. Более того, по представлениям таких крупных специалистов, как С. Хокинг и Дж. Уилер в масштабах околопланковской длины, то есть где-то около 10-43 см, все пространство состоит из микроскопических „червоточин“ и представляет собой, как ее называют, квантовую пену. Может быть, когда-нибудь, через тысячелетия, люди научатся раздувать эти „червоточины“ до космических размеров…
Что же касается принципиальной возможности перемещения во времени, то К.Торн не видит тут принципиальных «ловушек», поскольку возможность такого путешествия основана на уже достаточно проверенном и привычном эффекте теории относительности – «растягивании» времени с увеличением скорости.
«Словом, машина времени существует самым очевидным образом… но в бесконечно малом мире» – пишет по этому поводу французский научно-популярный журнал «Сьянс э ви». Такая констатация, конечно, мало обнадеживает человека, который бы хотел совершить путешествие во времени, ну если не завтра, то по крайней мере в начале следующего века. И все-таки должен ли человек оставить всякую надежду на путешествия в пространстве и времени? Конечно, нет. Если космический корабль будущего и машина времени еще не появились на свет, то гипотеза о том, что однажды они появятся, уже перестала быть чисто теоретической.
Сверхскоростные перемещения в пространстве – первая и наиболее доступная область применения «червячных дыр». Сегодня для межпланетных полетов даже в Солнечной системе требуются годы и даже десятилетия. Ну а тем, кто пожелал бы ощутить себя менее одиноким во Вселенной и отправился бы на поиски жизни к другим планетам, путешествие обернулось бы 160 тысячами годов полета до самой близкой к нам звезды – Проксимы Центавра.
Даже если предположить, что корабль сможет достичь скорости света, то и тогда на дорогу уйдет не менее десятка лет. Однако самая передовая техника и самые большие оптимисты не заглядывают за рубеж 20% от скорости света. Значит, чтобы начать исследования за пределами Млечного пути, не хватит и нескольких поколений космонавтов? Не отчаивайтесь, «червячные дыры» могут сделать подобные путешествия практически мгновенными. Главной заботой станет правильный выбор нужного туннеля, чтобы очутиться именно в нужном месте, а не в каком-либо другом…
Путешествия во времени организовать и осуществить будет значительно сложнее. Здесь необходимо помнить, что в соответствии со все теми же уравнениями Эйнштейна, время течет тем медленнее, чем быстрее происходит перемещение.
1 2 3 4 5 6 7