Ген передается от деда или бабки к внуку или внучке, оставаясь интактным, и проходит через промежуточное поколение, не смешиваясь с другими генами. Если бы гены постоянно сливались друг с другом, естественный отбор в нашем теперешнем понимании был бы невозможен. Между прочим, это было доказано еще при жизни Дарвина и причинило ему немало беспокойства, поскольку в те дни господствовала теория слитной наследственности. Открытие Менделя уже было опубликовано и оно могло бы успокоить Дарвина, но, увы!, он так и не узнал о нем; никто, по-видимому, не прочитал тогда эту работу. Она привлекла внимание лишь спустя годы после смерти и Дарвина, и Менделя. Мендель, возможно, не представлял себе всего значения своих открытий, иначе он мог бы написать Дарвину.
Другой аспект корпускулярности гена состоит в том, что он никогда не стареет; он с равной вероятностью может умереть в возрасте как миллиона, так и всего ста лет. Он перепрыгивает из одного тела в другое, манипулируя ими на свой лад и в собственных целях, покидая эти смертные тела одно за другим, прежде чем они состарятся и умрут.
Гены бессмертны, или, скорее, их определяют как генетические сущности, почти заслуживающие такого эпитета. Мы, индивидуальные машины выживания в этом мире, можем рассчитывать прожить еще несколько десятков лет. Но ожидаемая продолжительность жизни генов должна измеряться не в десятках, а в тысячах и миллионах лет.
У видов, размножающихся половым путем, отдельная особь — слишком крупная и слишком преходящая генетическая единица, чтобы ее можно было назвать значимой единицей естественного отбора (3). Группа индивидуумов — еще более крупная единица. С генетической точки зрения индивидуумы и группы подобны тучам на небе или пыльным бурям в пустыне. Это временные агрегации или федерации. Они не остаются стабильными в эволюционном масштабе времени. Популяции могут сохраняться довольно долго, но они постоянно смешиваются с другими популяциями, утрачивая при этом свою идентичнксть. Кроме того, они подвержены эволюционному изменению изнутри. Популяция недостаточно дискретна, чтобы служить единицей естественного отбора, она недостаточно стабильна и однородна, чтобы оказаться «отобранной» в ущерб другой популяции.
Отдельный организм кажется достаточно дискретным, пока он живет, но, Боже, как недолго это длится! Каждый индивидуум уникален. Эволюция невозможна, если все, чем вы располагаете — выбор между организмами, каждый из которых имеется лишь в одном экземпляре! Половое размножение — это не репликация. Точно так же, как данная популяция «загрязнена» другими популяциями, так и потомство данного индивидуума «загрязнено» потомством его полового партнера. В ваших детях от вас лишь половина, в ваших внуках — лишь четверть. По прошествии нескольких поколений вы можете надеяться только на то, что каждый из ваших многочисленных потомков будет нести в себе маленькую частичку, полученную от вас, всего несколько генов, даже в том случае, если некоторые среди этих потомков будут носить вашу фамилию.
Индивидуумы не вечны, они преходящи. Хромосомы также уходят в небытие, подобно пачке карт, полученных каждым из игроков и отыгранных вскоре после сдачи. Но с самими картами при тасовке ничего не происходит. Карты — это гены. Гены не разрушаются при кроссинговере, они просто меняют партнеров и продолжают двигаться дальше. Конечно, они движутся дальше. Это их работа. Они — репликаторы, а мы-машины, необходимые им для того, чтобы выжить. После того как мы выполнили свою задачу, нас выбрасывают. Но гены — выходцы из геологического времени, они здесь навеки.
Гены, подобно алмазам, вечны, но в несколько ином плане, чем алмазы. Отдельный кристалл алмаза постоянно сохраняет неизменную атомную структуру. Молекула ДНК не обладает таким постоянством. Жизнь каждой отдельной физической молекулы ДНК довольно коротка, составляя, возможно, несколько месяцев, и безусловно не больше, чем продолжительность жизни человека. Но молекула ДНК может теоретически продолжать существование в виде копий самой себя в течение 100 млн. лет. Кроме того, подобно древним репликаторам в первичном бульоне, копии какого-то одного гена могут распространиться по всему миру. Разница лишь в том, что все современные варианты аккуратно упакованы в тела машин выживания.
Всем этим я хочу подчеркнуть потенциальное квази-бессмертие гена в форме копий как его определяющее свойство. Для некоторых целей вполне приемлемо определить ген как отдельный цистрон, однако для эволюционной теории это определение следует расширить. Степень расширения зависит от целей данного определения. Мы хотим найти практическую единицу естественного отбора. Для начала мы должны перечислить те свойства, которыми должна обладать единица естественного отбора,чтобы добиться успеха. Как было установлено в гл. 2, это долговечность, плодовитость и точность копирования. Затем мы просто определяем «ген» как самую большую единицу, которая, по крайней мере потенциально, обладает этими свойствами. Ген — это долгоживущий репликатор, существующий в форме многих идентичных копий. Его долговечность не безгранична. Даже алмаз нельзя считать абсолютно вечным и даже цистрон может оказаться разрезанным пополам при кроссинговере. Ген можно определить как участок хромосомы, достаточно короткий, чтобы он мог сохраняться потенциально в течение достаточно долгого времени и функционировать в качестве значимой единицы естественного отбора.
Что именно означает «достаточно долгое время»? Однозначно и быстро ответить на этот вопрос нельзя. Все зависит от того, насколько сильное «давление» оказывает естественный отбор. Иными словами, насколько больше вероятность того, что погибнет «плохая» генетическая единица, а не ее «хороший» аллель. Это чисто количественный фактор, который в разных случаях будет неодинаков. Самая крупная практическая единица естественного отбора — ген — обычно занимает на шкале промежуточное положение между цистроном и хромосомой.
Ген является хорошим кандидатом на роль основной единицы естественного отбора благодаря своему потенциальному бессмертию. Теперь настало время остановиться на слове «потенциальное». Ген может прожить миллион лет, но многие новые гены не доживают до конца даже в своём первом поколении. Те немногие гены, которым это удается, выживают отчасти просто потому, что им повезло, но главным образом благодаря имеющимся у них необходимым качествам, а это означает, что они способны создавать машины выживания. Они воздействуют на эмбриональное развитие каждого из последовательного ряда тел, в которых они оказываются, в результате чего шансы этого тела на выживание и размножение становятся чуть выше, чем они могли бы быть при воздействии на него конкурентного гена или аллеля. Например, «хороший» ген может обеспечить свое выживание, наделяя последовательные тела, в которых он оказывается, длинными ногами, дающими им возможность убегать от хищников. Это частный, а не универсальный пример. Длинные ноги ведь не всегда дают преимущество. Кроту они осложняли бы жизнь. Не лучше ли нам, не увязая в деталях, подумать о каких-то универсальных качествах, которые мы ожидаем встретить у всех хороших (т. е. долгоживущих) генов? А также о том, каковы те свойства, по которым можно сразу узнать «плохой» недолговечный ген? Таких универсальных свойств может быть несколько, но одно из них особенно тесно связано с темой этой книги: на генном уровне альтруизм — плохая черта, а эгоизм — хорошая. Это неумолимо вытекает из наших определений альтруизма и эгоизма. Гены непосредственно конкурируют за выживание со своими аллелями, содержащимися в генофонде, поскольку эти аллели стремятся занять их место в хромосомах последующих поколений. Любой ген, поведение которого направлено на то, чтобы повысить собственные шансы на сохранение в генофонде за счет своих аллелей, будет, по определению, стремиться выжить (в сущности, это тавтология). Ген представляет собой основную единицу эгоизма.
Итак, мы сформулировали главную идею, заключенную в этой главе. Но я несколько завуалировал при этом некоторые сложности и негласные допущения. О первой сложности мы уже вкратце говорили. Как бы независимо и свободно ни совершали гены свое путешествие из поколения в поколение, их никак нельзя считать свободными и независимыми в роли факторов, регулирующих эмбриональное развитие. Они сотрудничают и взаимодействуют как между собой, так и с внешней средой неимоверно сложными способами. Такие выражения, как «ген длинных ног» или «ген альтруистичного поведения» — удобные обороты речи, однако важно понимать, что они означают. Нет такого гена, который сам по себе создает длинную или короткую ногу. Построение ноги требует совместного действия множества генов. Необходимо также участие внешней среды: ведь в конечном счете ноги «сделаны» из пищи! Вполне возможно, однако, что существует некий определенный ген, который, при прочих равных условиях, детерминирует развитие более длинных ног, чем его аллель.
В качестве аналогии приведем влияние удобрения, например нитрата, на рост пшеницы. Общеизвестно, что растения пшеницы лучше растут при внесении в почву нитрата, чем без удобрения. Никто, однако, не станет утверждать, что растение пшеницы можно получить из одного только нитрата. Совершенно очевидно, что для этого необходимы также семена, почва, солнечный свет, вода и различные минеральные вещества. Но если все эти другие факторы остаются на постоянном уровне или даже если они варьируют в известных пределах, добавление нитрата улучшит рост пшеницы. То же самое относится к воздействию единичных генов на развитие зародыша. Эмбриональное развитие контролируется такой сложной сетью переплетающихся взаимозависимостей, что нам лучше их не касаться. Ни один генетический фактор или фактор среды нельзя считать единственной «причиной» развития той или иной части тела младенца. Все части его тела образуются под влиянием практически бесконечного числа факторов. Но любое различие между одним младенцем и другим, например различие в длине ног, можно без труда объяснить одним или несколькими простыми различиями либо в среде, либо в генах. В конкретной борьбе за выживание главная роль принадлежит именно различиям, причем эволюционное значение имеют различия, контролируемые генетически.
В той мере, в какой это касается гена, его аллели — это его злейшие соперники, тогда как другие гены — это лишь часть его среды, подобно температуре, пище, хищникам или компаньонам. Эффект данного гена зависит от его среды, а в нее входят другие гены. Иногда данный ген характеризуется одним эффектом в присутствии какого-то определенного гена и совсем другим в присутствии иного набора генов. Весь набор генов данного организма образует своего рода генетический климат, или фон, изменяющий эффекты каждого отдельного гена и влияющий на них.
Здесь мы, по-видимому, столкнулись с парадоксом. Если создание младенца — столь сложный процесс, требующий совместного действия множества участников, и если каждому гену необходимы несколько тысяч других генов, чтобы выполнить данную задачу, то как примирить это с представленной мной картиной неделимых генов, перепрыгивающих, подобно сернам, из тела в тело на протяжении веков: свободных, не встречающих препятствий и своекорыстных факторов жизни? Так все это было чепухой? Вовсе нет. Может быть, кое-где я несколько увлекся, но я не говорил ерунды и никакого парадокса на самом деле нет. Это можно объяснить с помощью другой аналогии.
Один гребец в одиночку не может выиграть соревнования по гребле между Оксфордским и Кембриджским университетами. Ему нужны восемь товарищей. Каждый из них — «специалист» в своей области и всегда занимает в лодке определенное место, выполняя функции рулевого, загребных или носового. Гребля — коллективное мероприятие, причем одни спортсмены часто бывают сильнее других. Допустим, что тренер хочет набрать себе команду из числа кандидатов, среди которых есть рулевые, загребные и носовые. Предположим, что отбор происходит следующим образом. Каждый день тренер создает три новые пробные команды, произвольно перебрасывая кандидатов на каждое место в лодке из одной команды в другую и устраивая затем соревнования между командами. Спустя несколько недель выясняется, что в выигрывающей команде часто участвуют одни и те же отдельные спортсмены. Их берут на заметку как хороших гребцов. Другие кандидаты чаще всего оказываются в проигрывающих командах и от них в конце концов отказываются. Но даже выдающийся гребец может иногда оказаться в проигравшей команде либо вследствие низкого уровня других ее членов, либо просто по невезению, например из-за встречного ветра. Сильные спортсмены лишь в среднем попадают в состав выигрывающей команды.
Гребцы — это гены. Соперники за каждое место в лодке-аллели, способные занимать одно и то же место в хромосоме. Быстрая гребля соответствует способности построить тело, достигающее успеха, т. е. выживающее. Ветер — это внешняя среда. Масса альтернативных кандидатов — генофонд. В той мере, в какой это касается выживания каждого отдельного тела, все его гены находятся в одной и той же лодке. Многие «хорошие» гены попадают в «плохую» компанию, оказавшись в теле, где имеется летальный ген, убивающий это тело еще в детском возрасте. В таком случае хороший ген гибнет вместе с остальными. Но это только одно тело, а ведь копии нашего хорошего гена живут и в других телах, в которых нет летального гена. Многие гены идут на дно, потому что они оказались в данном теле вместе с плохими генами, многие гибнут из-за неприятных событий другого рода, например потому, что в тело ударила молния. Однако по определению удача и невезенье распределяются случайным образом, и ген, который постоянно проигрывает, не просто неудачник — это плохой ген.
Одно из качеств хорошего гребца — способность к слаженному взаимодействию с другими членами команды. Это может быть не менее важно, чем сильные мышцы. Как это было показано на примере с бабочками, естественный отбор может бессознательно «отредактировать» данный генный комплекс с помощью инверсий и других крупных перемещений кусочков хромосом, в результате чего гены, которые хорошо кооперируются, образуют тесно сцепленные группы. Однако существует еще одна возможность для того, чтобы гены, никак не связанные между собой физически, могли отбираться по своей взаимной совместимости. Ген, хорошо сотрудничающий с большинством генов всего остального генофонда, с которыми он имеет шансы встретиться в последовательных телах, будет обладать неким преимуществом.
Например, чтобы хищник был эффективным, он должен обладать острыми резцами, кишечником определенного строения, способным переваривать мясо, и многими другими признаками. А эффективному растительноядному нужны плоские перетирающие зубы и гораздо более длинный кишечник с совершенно иным биохимическим механизмом переваривания пищи. В генофонде какого-нибудь растительноядного любой новый ген, который преподнес бы своим обладателям острые плотоядные зубы, не имел бы успеха; и не потому, что плотоядность вообще нечто дурное, но потому, что организм не может эффективно усваивать мясо, если у него нет соответствующей пищеварительной системы. Гены острых плотоядных зубов не несут в себе ничего безусловно отрицательного. Они плохи только в таком генофонде, в котором доминируют гены признаков, связанных с растительноядным типом питания.
Это очень, сложная и тонкая идея. Она сложна, потому что «среда» каждого отдельного гена в значительной мере состоит из других генов, каждый из которых сам подвергается отбору, направленному на способность кооперироваться со своей средой из других генов. Аналогия, позволяющая пояснить эту тонкость, существует, однако она выходит за рамки нашего повседневного опыта. Это аналогия с математической «теорией игр», которая понадобится нам в гл. 5 в связи с агрессивным соперничеством между отдельными животными. Поэтому я откладываю дальнейшее обсуждение этого вопроса до тех пор, пока мы не дойдем до конца гл. 5, и возвращаюсь к центральной идее данной главы. Она заключается в том, что основной единицей естественного отбора лучше считать не вид, не популяцию, не индивидуум даже, а какую-то небольшую единицу генетического материала, которую удобно назвать геном. Краеугольным камнем этих рассуждений, как мы уже говорили, служит допущение, что гены потенциально бессмертны, тогда как тела и все другие единицы более высокого ранга преходящи. Рассуждения эти основаны на двух фактах: факте полового размножения и кроссинговера и факте смертности отдельного индивидуума.
Это ознакомительный отрывок книги. Данная книга защищена авторским правом. Для получения полной версии книги обратитесь к нашему партнеру - распространителю легального контента "ЛитРес":
Полная версия книги 'Эгоистичный ген'
1 2 3 4 5 6 7 8 9
Другой аспект корпускулярности гена состоит в том, что он никогда не стареет; он с равной вероятностью может умереть в возрасте как миллиона, так и всего ста лет. Он перепрыгивает из одного тела в другое, манипулируя ими на свой лад и в собственных целях, покидая эти смертные тела одно за другим, прежде чем они состарятся и умрут.
Гены бессмертны, или, скорее, их определяют как генетические сущности, почти заслуживающие такого эпитета. Мы, индивидуальные машины выживания в этом мире, можем рассчитывать прожить еще несколько десятков лет. Но ожидаемая продолжительность жизни генов должна измеряться не в десятках, а в тысячах и миллионах лет.
У видов, размножающихся половым путем, отдельная особь — слишком крупная и слишком преходящая генетическая единица, чтобы ее можно было назвать значимой единицей естественного отбора (3). Группа индивидуумов — еще более крупная единица. С генетической точки зрения индивидуумы и группы подобны тучам на небе или пыльным бурям в пустыне. Это временные агрегации или федерации. Они не остаются стабильными в эволюционном масштабе времени. Популяции могут сохраняться довольно долго, но они постоянно смешиваются с другими популяциями, утрачивая при этом свою идентичнксть. Кроме того, они подвержены эволюционному изменению изнутри. Популяция недостаточно дискретна, чтобы служить единицей естественного отбора, она недостаточно стабильна и однородна, чтобы оказаться «отобранной» в ущерб другой популяции.
Отдельный организм кажется достаточно дискретным, пока он живет, но, Боже, как недолго это длится! Каждый индивидуум уникален. Эволюция невозможна, если все, чем вы располагаете — выбор между организмами, каждый из которых имеется лишь в одном экземпляре! Половое размножение — это не репликация. Точно так же, как данная популяция «загрязнена» другими популяциями, так и потомство данного индивидуума «загрязнено» потомством его полового партнера. В ваших детях от вас лишь половина, в ваших внуках — лишь четверть. По прошествии нескольких поколений вы можете надеяться только на то, что каждый из ваших многочисленных потомков будет нести в себе маленькую частичку, полученную от вас, всего несколько генов, даже в том случае, если некоторые среди этих потомков будут носить вашу фамилию.
Индивидуумы не вечны, они преходящи. Хромосомы также уходят в небытие, подобно пачке карт, полученных каждым из игроков и отыгранных вскоре после сдачи. Но с самими картами при тасовке ничего не происходит. Карты — это гены. Гены не разрушаются при кроссинговере, они просто меняют партнеров и продолжают двигаться дальше. Конечно, они движутся дальше. Это их работа. Они — репликаторы, а мы-машины, необходимые им для того, чтобы выжить. После того как мы выполнили свою задачу, нас выбрасывают. Но гены — выходцы из геологического времени, они здесь навеки.
Гены, подобно алмазам, вечны, но в несколько ином плане, чем алмазы. Отдельный кристалл алмаза постоянно сохраняет неизменную атомную структуру. Молекула ДНК не обладает таким постоянством. Жизнь каждой отдельной физической молекулы ДНК довольно коротка, составляя, возможно, несколько месяцев, и безусловно не больше, чем продолжительность жизни человека. Но молекула ДНК может теоретически продолжать существование в виде копий самой себя в течение 100 млн. лет. Кроме того, подобно древним репликаторам в первичном бульоне, копии какого-то одного гена могут распространиться по всему миру. Разница лишь в том, что все современные варианты аккуратно упакованы в тела машин выживания.
Всем этим я хочу подчеркнуть потенциальное квази-бессмертие гена в форме копий как его определяющее свойство. Для некоторых целей вполне приемлемо определить ген как отдельный цистрон, однако для эволюционной теории это определение следует расширить. Степень расширения зависит от целей данного определения. Мы хотим найти практическую единицу естественного отбора. Для начала мы должны перечислить те свойства, которыми должна обладать единица естественного отбора,чтобы добиться успеха. Как было установлено в гл. 2, это долговечность, плодовитость и точность копирования. Затем мы просто определяем «ген» как самую большую единицу, которая, по крайней мере потенциально, обладает этими свойствами. Ген — это долгоживущий репликатор, существующий в форме многих идентичных копий. Его долговечность не безгранична. Даже алмаз нельзя считать абсолютно вечным и даже цистрон может оказаться разрезанным пополам при кроссинговере. Ген можно определить как участок хромосомы, достаточно короткий, чтобы он мог сохраняться потенциально в течение достаточно долгого времени и функционировать в качестве значимой единицы естественного отбора.
Что именно означает «достаточно долгое время»? Однозначно и быстро ответить на этот вопрос нельзя. Все зависит от того, насколько сильное «давление» оказывает естественный отбор. Иными словами, насколько больше вероятность того, что погибнет «плохая» генетическая единица, а не ее «хороший» аллель. Это чисто количественный фактор, который в разных случаях будет неодинаков. Самая крупная практическая единица естественного отбора — ген — обычно занимает на шкале промежуточное положение между цистроном и хромосомой.
Ген является хорошим кандидатом на роль основной единицы естественного отбора благодаря своему потенциальному бессмертию. Теперь настало время остановиться на слове «потенциальное». Ген может прожить миллион лет, но многие новые гены не доживают до конца даже в своём первом поколении. Те немногие гены, которым это удается, выживают отчасти просто потому, что им повезло, но главным образом благодаря имеющимся у них необходимым качествам, а это означает, что они способны создавать машины выживания. Они воздействуют на эмбриональное развитие каждого из последовательного ряда тел, в которых они оказываются, в результате чего шансы этого тела на выживание и размножение становятся чуть выше, чем они могли бы быть при воздействии на него конкурентного гена или аллеля. Например, «хороший» ген может обеспечить свое выживание, наделяя последовательные тела, в которых он оказывается, длинными ногами, дающими им возможность убегать от хищников. Это частный, а не универсальный пример. Длинные ноги ведь не всегда дают преимущество. Кроту они осложняли бы жизнь. Не лучше ли нам, не увязая в деталях, подумать о каких-то универсальных качествах, которые мы ожидаем встретить у всех хороших (т. е. долгоживущих) генов? А также о том, каковы те свойства, по которым можно сразу узнать «плохой» недолговечный ген? Таких универсальных свойств может быть несколько, но одно из них особенно тесно связано с темой этой книги: на генном уровне альтруизм — плохая черта, а эгоизм — хорошая. Это неумолимо вытекает из наших определений альтруизма и эгоизма. Гены непосредственно конкурируют за выживание со своими аллелями, содержащимися в генофонде, поскольку эти аллели стремятся занять их место в хромосомах последующих поколений. Любой ген, поведение которого направлено на то, чтобы повысить собственные шансы на сохранение в генофонде за счет своих аллелей, будет, по определению, стремиться выжить (в сущности, это тавтология). Ген представляет собой основную единицу эгоизма.
Итак, мы сформулировали главную идею, заключенную в этой главе. Но я несколько завуалировал при этом некоторые сложности и негласные допущения. О первой сложности мы уже вкратце говорили. Как бы независимо и свободно ни совершали гены свое путешествие из поколения в поколение, их никак нельзя считать свободными и независимыми в роли факторов, регулирующих эмбриональное развитие. Они сотрудничают и взаимодействуют как между собой, так и с внешней средой неимоверно сложными способами. Такие выражения, как «ген длинных ног» или «ген альтруистичного поведения» — удобные обороты речи, однако важно понимать, что они означают. Нет такого гена, который сам по себе создает длинную или короткую ногу. Построение ноги требует совместного действия множества генов. Необходимо также участие внешней среды: ведь в конечном счете ноги «сделаны» из пищи! Вполне возможно, однако, что существует некий определенный ген, который, при прочих равных условиях, детерминирует развитие более длинных ног, чем его аллель.
В качестве аналогии приведем влияние удобрения, например нитрата, на рост пшеницы. Общеизвестно, что растения пшеницы лучше растут при внесении в почву нитрата, чем без удобрения. Никто, однако, не станет утверждать, что растение пшеницы можно получить из одного только нитрата. Совершенно очевидно, что для этого необходимы также семена, почва, солнечный свет, вода и различные минеральные вещества. Но если все эти другие факторы остаются на постоянном уровне или даже если они варьируют в известных пределах, добавление нитрата улучшит рост пшеницы. То же самое относится к воздействию единичных генов на развитие зародыша. Эмбриональное развитие контролируется такой сложной сетью переплетающихся взаимозависимостей, что нам лучше их не касаться. Ни один генетический фактор или фактор среды нельзя считать единственной «причиной» развития той или иной части тела младенца. Все части его тела образуются под влиянием практически бесконечного числа факторов. Но любое различие между одним младенцем и другим, например различие в длине ног, можно без труда объяснить одним или несколькими простыми различиями либо в среде, либо в генах. В конкретной борьбе за выживание главная роль принадлежит именно различиям, причем эволюционное значение имеют различия, контролируемые генетически.
В той мере, в какой это касается гена, его аллели — это его злейшие соперники, тогда как другие гены — это лишь часть его среды, подобно температуре, пище, хищникам или компаньонам. Эффект данного гена зависит от его среды, а в нее входят другие гены. Иногда данный ген характеризуется одним эффектом в присутствии какого-то определенного гена и совсем другим в присутствии иного набора генов. Весь набор генов данного организма образует своего рода генетический климат, или фон, изменяющий эффекты каждого отдельного гена и влияющий на них.
Здесь мы, по-видимому, столкнулись с парадоксом. Если создание младенца — столь сложный процесс, требующий совместного действия множества участников, и если каждому гену необходимы несколько тысяч других генов, чтобы выполнить данную задачу, то как примирить это с представленной мной картиной неделимых генов, перепрыгивающих, подобно сернам, из тела в тело на протяжении веков: свободных, не встречающих препятствий и своекорыстных факторов жизни? Так все это было чепухой? Вовсе нет. Может быть, кое-где я несколько увлекся, но я не говорил ерунды и никакого парадокса на самом деле нет. Это можно объяснить с помощью другой аналогии.
Один гребец в одиночку не может выиграть соревнования по гребле между Оксфордским и Кембриджским университетами. Ему нужны восемь товарищей. Каждый из них — «специалист» в своей области и всегда занимает в лодке определенное место, выполняя функции рулевого, загребных или носового. Гребля — коллективное мероприятие, причем одни спортсмены часто бывают сильнее других. Допустим, что тренер хочет набрать себе команду из числа кандидатов, среди которых есть рулевые, загребные и носовые. Предположим, что отбор происходит следующим образом. Каждый день тренер создает три новые пробные команды, произвольно перебрасывая кандидатов на каждое место в лодке из одной команды в другую и устраивая затем соревнования между командами. Спустя несколько недель выясняется, что в выигрывающей команде часто участвуют одни и те же отдельные спортсмены. Их берут на заметку как хороших гребцов. Другие кандидаты чаще всего оказываются в проигрывающих командах и от них в конце концов отказываются. Но даже выдающийся гребец может иногда оказаться в проигравшей команде либо вследствие низкого уровня других ее членов, либо просто по невезению, например из-за встречного ветра. Сильные спортсмены лишь в среднем попадают в состав выигрывающей команды.
Гребцы — это гены. Соперники за каждое место в лодке-аллели, способные занимать одно и то же место в хромосоме. Быстрая гребля соответствует способности построить тело, достигающее успеха, т. е. выживающее. Ветер — это внешняя среда. Масса альтернативных кандидатов — генофонд. В той мере, в какой это касается выживания каждого отдельного тела, все его гены находятся в одной и той же лодке. Многие «хорошие» гены попадают в «плохую» компанию, оказавшись в теле, где имеется летальный ген, убивающий это тело еще в детском возрасте. В таком случае хороший ген гибнет вместе с остальными. Но это только одно тело, а ведь копии нашего хорошего гена живут и в других телах, в которых нет летального гена. Многие гены идут на дно, потому что они оказались в данном теле вместе с плохими генами, многие гибнут из-за неприятных событий другого рода, например потому, что в тело ударила молния. Однако по определению удача и невезенье распределяются случайным образом, и ген, который постоянно проигрывает, не просто неудачник — это плохой ген.
Одно из качеств хорошего гребца — способность к слаженному взаимодействию с другими членами команды. Это может быть не менее важно, чем сильные мышцы. Как это было показано на примере с бабочками, естественный отбор может бессознательно «отредактировать» данный генный комплекс с помощью инверсий и других крупных перемещений кусочков хромосом, в результате чего гены, которые хорошо кооперируются, образуют тесно сцепленные группы. Однако существует еще одна возможность для того, чтобы гены, никак не связанные между собой физически, могли отбираться по своей взаимной совместимости. Ген, хорошо сотрудничающий с большинством генов всего остального генофонда, с которыми он имеет шансы встретиться в последовательных телах, будет обладать неким преимуществом.
Например, чтобы хищник был эффективным, он должен обладать острыми резцами, кишечником определенного строения, способным переваривать мясо, и многими другими признаками. А эффективному растительноядному нужны плоские перетирающие зубы и гораздо более длинный кишечник с совершенно иным биохимическим механизмом переваривания пищи. В генофонде какого-нибудь растительноядного любой новый ген, который преподнес бы своим обладателям острые плотоядные зубы, не имел бы успеха; и не потому, что плотоядность вообще нечто дурное, но потому, что организм не может эффективно усваивать мясо, если у него нет соответствующей пищеварительной системы. Гены острых плотоядных зубов не несут в себе ничего безусловно отрицательного. Они плохи только в таком генофонде, в котором доминируют гены признаков, связанных с растительноядным типом питания.
Это очень, сложная и тонкая идея. Она сложна, потому что «среда» каждого отдельного гена в значительной мере состоит из других генов, каждый из которых сам подвергается отбору, направленному на способность кооперироваться со своей средой из других генов. Аналогия, позволяющая пояснить эту тонкость, существует, однако она выходит за рамки нашего повседневного опыта. Это аналогия с математической «теорией игр», которая понадобится нам в гл. 5 в связи с агрессивным соперничеством между отдельными животными. Поэтому я откладываю дальнейшее обсуждение этого вопроса до тех пор, пока мы не дойдем до конца гл. 5, и возвращаюсь к центральной идее данной главы. Она заключается в том, что основной единицей естественного отбора лучше считать не вид, не популяцию, не индивидуум даже, а какую-то небольшую единицу генетического материала, которую удобно назвать геном. Краеугольным камнем этих рассуждений, как мы уже говорили, служит допущение, что гены потенциально бессмертны, тогда как тела и все другие единицы более высокого ранга преходящи. Рассуждения эти основаны на двух фактах: факте полового размножения и кроссинговера и факте смертности отдельного индивидуума.
Это ознакомительный отрывок книги. Данная книга защищена авторским правом. Для получения полной версии книги обратитесь к нашему партнеру - распространителю легального контента "ЛитРес":
Полная версия книги 'Эгоистичный ген'
1 2 3 4 5 6 7 8 9