Все лучшее, что есть у китов, дельфинов, тюленей, скатов и даже летучих мышей в средствах подводного хода и наблюдения – все это так или иначе воплощено в обводах корпусов, электронной оснастке, тактике субмарин. И если раньше они атаковали противника только из глубины, то подводные крейсера третьего поколения, к которым относился и «Курск», могут наносить удары и с воздуха – крылатыми ракетами, находясь при этом на глубине и за линией горизонта. Его сверхзвуковые противокорабельные ракеты «Гранит» могут поражать цели за 550 километров. Это главное, для чего создавались «антеи» – для противодействия океанским корабельным группировкам вероятного противника.
На «антеях» ракетный боекомплект втрое больший, чем на предыдущих проектах. А это дает шанс при многоракетном залпе, что хотя бы одна из них сможет преодолеть даже самую мощную противоракетную оборону. Более того, «антеи» могут наносить удар сразу по нескольким высокозащищенным кораблям – и по главной цели (авианосцу), и по эсминцам охранения.
Кроме противокорабельных ракет, подлодки 949-го проекта оснащены мощным торпедным и торпедно-ракетным вооружением двух калибров, которое размещено в носовом отсеке прочного корпуса, тогда как контейнеры крылатых ракет вынесены в междукорпусное пространство, то есть между прочным корпусом и проницаемым «обтекателем» (легким корпусом). Именно поэтому «антеи» столь широки, что их прозвали «батонами».
Эти лодки приспособлены для действий в Арктике, благодаря раздвоенной форме кормовой оконечности и двум достаточно широко разнесенным гребным валам, что резко повышает маневренность корабля среди льдов, дает большие гарантии по сохранности гребных винтов. Легкие – наружные – корпуса этих лодок имеют специальные подкрепления, а боевая рубка сделана настолько прочно, что позволяет использовать её как таран для пробивания ледяного поля.
Более чем высокая скорость подводного хода – свыше 30 узлов (более 50 километров в час) позволяет «антеям» гоняться за быстроходными авианосцами, отрываться от преследования, оперативно выходить на рубежи развертывания.
Как и суперлайнер «Титаник», как и титановый «Комсомолец» (К-278), «Курск» тоже считался «непотопляемым». Во всяком случае его экипаж даже представить себе не мог, что их корабль может оказаться в столь плачевном состоянии, что все пути выхода из него будут перекрыты.
Вот как характеризовал свой подводный крейсер сам командир «Курска» капитан 1-го ранга Г. Лячин: «Корабль наш вообще, можно сказать, уникальный, имеющий перед подлодками противника целый ряд преимуществ. У нас оружие превосходит их образцы и по мощности, и по дальности радиуса действия, и по спектру своих возможностей, поскольку при необходимости мы имеем возможность одновременно атаковать из глубин океана множество целей: то есть наносить удары по наземным объектам, одиночным кораблям и крупным их соединениям. Кроме того, лодка имеет хорошую маневренность, высокую скорость движения в подводном положении…»
Капитан 1-го ранга Виктор Суродин, зам. командира однотипного «Пскова», не расходится во мнении с погибшим Лячиным: «Это был один из самых удачных проектов даже с точки зрения комфорта. Раньше матросы спали прямо в отсеках, на торпедах. А здесь – одно-, двух – и трехместные каюты, сауна, бассейн, куда, между прочим, воду набирали только с глубины 200 метров, самую что ни на есть чистую. В комнате отдыха можно было классно „разгрузиться“ с помощью видеослайдов. Хочешь в Сочи – заряжай картинку и расслабляйся под шум моря, хочешь в лес – на экране лес, а в воздухе запах хвои. Были здесь даже аквариум с рыбками, канарейки, цветы в горшках. Землю для цветов нам выдавали ещё в Северодвинске – специальную, обогащенную кислородом. В обычной-то земле цветы под водой не растут…»
ТАКТИКО-ТЕХНИЧЕСКИЕ ДАННЫЕ многоцелевой атомной ракетной подводной лодки К-141 проекта 949А («Антей)
Заложена в 1992 году в Северодвинске.
Спущена на воду в мае 1994 года.
Принята в эксплуатацию 30 декабря 1994 года.
Вошла в состав Северного флота в 1995 году.
Водоизмещение: надводное – 14 700 тонн,
Водоизмещение: подводное – 23 860 тонн.
Длина 154 метра.
Ширина 18, 2 метра.
Осадка 9, 2 метра.
Скорость в надводном положении 30 узлов,
Скорость в подводном положении 28 узлов.
Глубина погружения до 600 метров.
Главная энергетическая установка – два ядерных реактора ОК 650-Б, две паровые турбины по 90 л. с. каждая, два семилопастных гребных винта.
Вооружение – 24 крылатые ракеты П-700 («Гранит»), по 12 ракет с каждого борта.
4 торпедных аппарата калибра 533 мм и 2 торпедных аппарата калибра 650 мм. Максимальный боезапас первого отсека – 28 торпед и ракетоторпед.
Автономность – более 120 суток.
Район плавания – неограниченный.
Экипаж – 107 человек, в том числе 52 офицера.
Проект этой серии подводных лодок был разработан в Ленинграде – генеральным конструктором ЦКБ «Рубин» Игорем Барановым. Свою работу в этом качестве он начал в 1977 году. И.Л. Баранов – автор целого ряда оригинальных технических решений по созданию малошумных атомарин. Теоретические разработки и технические решения, выполненные им, обеспечили принципиальный рост боевой эффективности серийных проектов ПЛА – 949 и 949А.
В годы «перековки мечей на орала» Игорь Баранов предлагал переделать именно «антеи» для гражданского назначения – снять ракетно-торпедное оборудование и получить свободное пространство, куда бы вошло до 1000 тонн полезного груза. А если сделать врезку длиной до 30 метров, утверждал он, то на борт подводно-подледного контейнеровоза можно принимать и до 3500 тонн народнохозяйственных грузов… «Антеи» могли бы в кратчайшее время прокладывать торговые пути из Европы в страны Дальнего Востока под ледяным куполом Арктики.
Сегодня в составе ВМФ России находится десять атомных подводных лодок проекта 949А («Антей» или, по классификации НАТО, «Оскар-II»). Пять из них (К-148 «Краснодар», К-119 «Воронеж», К-410 «Смоленск», К-266 «Орел» и К-186 «Омск») приняты в эксплуатацию в период с 1986 по 1993 год и входят в состав Северного флота. К-141 «Курск» была шестой. Еще четыре (атомарины К-132 «Белгород», К-173 «Челябинск», К-442 «Томск» и К-456 «Касатка») несут свою службу на Тихоокеанском флоте1.
Проект 949А оказался настолько удачным, что серийное строительство «антеев» продолжается и в XXI веке.
Испытатель подводных лодок капитан 1-го ранга Михаил Волженский
ПОСЛЕ ВЗРЫВА
Как протекала катастрофа на атомной подводной лодке «Курск»
Частная версия
Прошло почти полгода с момента катастрофы АПЛ «Курск», которая воспринимается российским обществом и нами – бывшими подводниками – как полномасштабная многоплановая национальная трагедия.
Для выяснения обстоятельств и причин катастрофы 16 августа 2000 года была назначена правительственная комиссия.
Ни на секунду нельзя забывать, что работа правительственной комиссии проводится на народные деньги… Народ имеет право спрашивать, а комиссия обязана отчитываться перед народом…
За последние 40 лет в СССР и РФ было построено более 245 атомных подводных лодок. За этот период прошли специальную подготовку и прослужили более чем по пять лет на атомоходах более 200 000 офицеров и мичманов. (Эта цифра не учитывает тех, кто проходил на АПЛ срочную службу.) За этот же период участвовали непосредственно в строительстве и ремонте атомных подводных лодок Родины не менее 700 000 человек. (Эта цифра не учитывает тех, кто трудился на предприятиях, выпускающих для АПЛ комплектующие изделия.) С учетом сказанного можно смело утверждать, что значительная часть населения страны связала свою судьбу с атомным подводным флотом, вполне компетентно способна оценивать информацию, передаваемую СМИ о событиях, происходящих на флотах, и переживает за положение дел на флоте.
К этой части населения причисляю себя и я – автор этих строк.
Считаю, что три основные версии первопричины катастрофы определены правительственной комиссией верно. Столкновение с неопознанным подводным объектом, столкновение с миной, нештатная ситуация в первом отсеке…
Для нынешнего состояния информированности общества об обстоятельствах катастрофы считаю все три версии причин катастрофы равновероятными.
При рассмотрении версии «столкновение» считаю наиболее вероятным вариантом столкновение «Курска» с американской АПЛ.
Если рассматривать версию причины катастрофы – столкновение АПЛ с иностранной АПЛ, то наиболее корректным можно предполагать развитие событий в следующей последовательности.
Перед катастрофой, к 08.00 12 августа 2000 года, «Курск» прибыл в район проведения торпедных стрельб и находился милях в пятидесяти от отряда боевых кораблей (ОБК) – то есть один в большом районе моря, о чем и должен был доложить в очередном, последнем радиодонесении.
Надо полагать, что столкновение могло быть только не «лобовым», при котором столкнувшаяся АПЛ не имела бы шансов уйти с места аварии, а протекало по сценарию, изложенному ниже.
Иностранная АПЛ осуществляла слежение за АПЛ и вела гидроакустическую разведку, или, проще, вела запись подводного шума «Курска» на магнитную ленту. Дело это для американских подводников весьма прибыльное, так как за каждую минуту звукозаписи шумов ПЛ противника экипаж АПЛ получает дополнительное денежное вознаграждение…
Для летнего периода в арктических морях характерно явление, связанное с распространением звука в море, именуемое у гидроакустиков приповерхностным звуковым каналом. То есть в связи с тем, что верхние слои моря хорошо прогреты (до 8 – 10 °С), а нижние сохраняют обычную для Гольфстрима температуру (2 °С), звук от источника распространяется по глубинам слоями. Дистанции, на которые распространяется звук, в различных слоях неодинаковы. У поверхности звук распространяется, как правило, на значительные расстояния, гораздо большие, чем на глубинах среднего слоя (60 – 70 метров), на которых находились «Курск» и противник в момент слежения за «Курском». При переходе источника звука из одного слоя в другой контакт с источником звука теряется, если приемник сохраняет ранее занятую глубину. Все эти особенности распространения звука в море прекрасно знали и на «Курске», и на АПЛ противника.
Возможно, что «Курск» обнаружил следящую за ним АПЛ и решил донести о слежении командующему учениями. Для этого командир «Курска» объявил на борту учебную тревогу и после того, как личный состав разбежался по боевым постам и доложил о готовности, начал поэтапно всплывать на перископную глубину. Сначала АПЛ заняла безопасную глубину от столкновения с надводными кораблями (30 м), прослушала горизонт и кормовые курсовые углы, а потом, возможно, всплыла под перископ, подняла выдвижные устройства и начала описывать циркуляцию для осмотра горизонта визуально, готовясь передать радиодонесение.
Командир иностранной АПЛ в момент, когда «Курск» начал всплытие на безопасную глубину, потерял с ним акустический контакт и решил его восстановить «подскоком в упрежденную» точку. Для этого он развил кратковременно (минут на 20) ход до 12 – 14 узлов на безопасной для этой скорости глубине (60 м) и лег на курс догона. Но при расчете точки американец неправильно оценил последующее возможное маневрирование «Курска» или попросту «пожадничал» и наметил упрежденную точку в опасной, из-за возможности столкновения, зоне. Достигнув намеченной точки, он снизил скорость и всплыл в приповерхностный слой, в котором обнаружил прямо по курсу идущий на него «Курск», который заканчивал циркуляцию…
Интенсивность шума «Курска» на сонаре иностранной АПЛ резко возрастала… Было очевидно, что подводные лодки быстро сближаются…
У командира американской АПЛ складывалось впечатление, что пеленг на «Курск» медленно меняется вправо… Так как времени на определение элементов движения «Курска» не оставалось, он, для того чтобы избежать столкновения, скомандовал по наитию: «Руль лево на борт!..»
Нос АПЛ побежал по дуге циркуляции, корму начало заносить вправо, и в самом начале уклонения произошел удар, от которого АПЛ сильно тряхнуло, – правый горизонтальный стабилизатор, вместе с расположенными на нем перьями правого горизонтального и вертикального рулей, ударил по плоскости носовых торпедных аппаратов «Курска»…
Через мгновение за кормой АПЛ послышался сильный взрыв, от которого АПЛ ещё раз задрожала…
Несмотря на то что лодка стала хуже слушаться рулей, экипажу АПЛ удалось стабилизировать её движение по курсу и глубине (левые горизонтальный кормовой и вертикальный рули остались исправными, а винт АПЛ получил незначительные повреждения (или не получил повреждений)).
АПЛ сохраняет способность управляться по курсу и глубине и сохраняет главное качество подводной лодки – герметичность (плавучесть).
Через 135 секунд после столкновения, находясь в 3-4 кабельтовых от «Курска», на АПЛ услышали мощный взрыв, от которого корпус АПЛ содрогнулся. При этом на корпусе могло оказаться поврежденным как противогидролокационное покрытие, так и антенные клеевые покрытия… АПЛ уходит в ближайшую базу на ремонт…
Как заявили американцы, «даже если что-то и было бы, мы в этом никогда не признаемся».
В момент, предшествующий столкновению, «Курск» всплывал на перископную глубину или находился на перископной глубине, что подтверждается поднятыми на АПЛ выдвижными устройствами и тем, что личный состав находился на своих местах по боевому расписанию (это ясно из найденной записки капитан-лейтенанта Колесникова Д.Р.), а следовательно, скорость АПЛ была 6 – 8 узлов.
От удара стабилизатора горизонтального руля столкнувшейся АПЛ («гигантского молотка» массой 6900 т) по ограждению (щиту волнореза) торпедного аппарата «Курска» щит торпедного аппарата, передняя крышка и носовая часть торпедного аппарата, вместе с торпедой, которая в нем находится, получают значительные деформации – сминаются или расплющиваются.
В торпедном аппарате от полученных деформаций происходит первый взрыв (эквивалентный 100 кг тротила) – взрыв двигателя торпеды. От взрыва: разрушается задняя крышка торпедного аппарата и в торпедный отсек бьет столб огня; в первом отсеке АПЛ возникают короткие замыкания в силовой сети и начинается объемный пожар… Такова версия развития событий, связанная со столкновением АПЛ.
(Последующие рассуждения верны, если мощность первого взрыва оценена сейсмологами правильно и не является дезинформацией…)
Какой бы ни была причина, приведшая к взрыву, очевидно, что взрыв мощностью 100 кг тротила мог произойти на АПЛ только при взрыве двигателя парогазовой торпеды или, скорее всего, твердотопливной ракетоторпеды, размещенной в торпедном аппарате. На АПЛ не было других устройств, авария которых привела бы к взрыву указанной сейсмологами мощности.
Если бы авария двигателя произошла на стеллажах, первого взрыва не было бы – был бы объемный пожар. Как показывают практика и предварительные расчеты, в этом случае экипаж «Курска» имел бы достаточное количество возможностей предотвратить взрыв боезапаса…
Анализируя информацию правительственных СМИ, служившие на атомных подводных лодках специалисты могут нарисовать для себя картину развития катастрофы на «Курске»…
С вероятностью 0, 9 можно полагать, что после первого взрыва, вне зависимости от причин его происхождения, события на АПЛ развивались в следующей последовательности:
• личный состав 1-го отсека мгновенно погиб в результате взрыва;
• в отсек бьет раскаленная газовая струя из аварийного торпедного аппарата (ТА). По отсеку, с высокой кинетической энергией, разлетаются обломки оборудования, разнообразных «дельных вещей». Отбиваемые со штатных мест крепления струей газов, эти обломки рикошетируют от переборок и корпусных конструкций. (Возможно, через 135 секунд после первого взрыва удар рикошетом одного из таких обломков по разогретому пожаром боевому зарядному отделению (БЗО) боевой торпеды, хранящейся на стеллажах, и вызвал взрыв торпеды в отсеке, с одновременной детонацией всех стеллажных, боевых торпед…);
• выведены из строя системы аварийного орошения и затопления торпедного отсека, носовая станция и трубопроводы системы химического пожаротушения торпедного отсека или системы дистанционного управления ими;
• вероятно, разрушена или выведена из строя аккумуляторная батарея и носовая станция пенной системы пожаротушения (ВПЛ);
• в 1-м отсеке нарастают температура и давление (разрастается объемный пожар), в результате чего забортная вода не поступает в отсек и АПЛ сохраняет плавучесть;
• на АПЛ объявлена аварийная тревога (возможно, по аварийному телефону, так как водолазами установлено, что трубки аварийных телефонов вынуты из гнезд и висят на проводах), одновременно начато всплытие в позиционное, а, может быть, и в крейсерское положение.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
На «антеях» ракетный боекомплект втрое больший, чем на предыдущих проектах. А это дает шанс при многоракетном залпе, что хотя бы одна из них сможет преодолеть даже самую мощную противоракетную оборону. Более того, «антеи» могут наносить удар сразу по нескольким высокозащищенным кораблям – и по главной цели (авианосцу), и по эсминцам охранения.
Кроме противокорабельных ракет, подлодки 949-го проекта оснащены мощным торпедным и торпедно-ракетным вооружением двух калибров, которое размещено в носовом отсеке прочного корпуса, тогда как контейнеры крылатых ракет вынесены в междукорпусное пространство, то есть между прочным корпусом и проницаемым «обтекателем» (легким корпусом). Именно поэтому «антеи» столь широки, что их прозвали «батонами».
Эти лодки приспособлены для действий в Арктике, благодаря раздвоенной форме кормовой оконечности и двум достаточно широко разнесенным гребным валам, что резко повышает маневренность корабля среди льдов, дает большие гарантии по сохранности гребных винтов. Легкие – наружные – корпуса этих лодок имеют специальные подкрепления, а боевая рубка сделана настолько прочно, что позволяет использовать её как таран для пробивания ледяного поля.
Более чем высокая скорость подводного хода – свыше 30 узлов (более 50 километров в час) позволяет «антеям» гоняться за быстроходными авианосцами, отрываться от преследования, оперативно выходить на рубежи развертывания.
Как и суперлайнер «Титаник», как и титановый «Комсомолец» (К-278), «Курск» тоже считался «непотопляемым». Во всяком случае его экипаж даже представить себе не мог, что их корабль может оказаться в столь плачевном состоянии, что все пути выхода из него будут перекрыты.
Вот как характеризовал свой подводный крейсер сам командир «Курска» капитан 1-го ранга Г. Лячин: «Корабль наш вообще, можно сказать, уникальный, имеющий перед подлодками противника целый ряд преимуществ. У нас оружие превосходит их образцы и по мощности, и по дальности радиуса действия, и по спектру своих возможностей, поскольку при необходимости мы имеем возможность одновременно атаковать из глубин океана множество целей: то есть наносить удары по наземным объектам, одиночным кораблям и крупным их соединениям. Кроме того, лодка имеет хорошую маневренность, высокую скорость движения в подводном положении…»
Капитан 1-го ранга Виктор Суродин, зам. командира однотипного «Пскова», не расходится во мнении с погибшим Лячиным: «Это был один из самых удачных проектов даже с точки зрения комфорта. Раньше матросы спали прямо в отсеках, на торпедах. А здесь – одно-, двух – и трехместные каюты, сауна, бассейн, куда, между прочим, воду набирали только с глубины 200 метров, самую что ни на есть чистую. В комнате отдыха можно было классно „разгрузиться“ с помощью видеослайдов. Хочешь в Сочи – заряжай картинку и расслабляйся под шум моря, хочешь в лес – на экране лес, а в воздухе запах хвои. Были здесь даже аквариум с рыбками, канарейки, цветы в горшках. Землю для цветов нам выдавали ещё в Северодвинске – специальную, обогащенную кислородом. В обычной-то земле цветы под водой не растут…»
ТАКТИКО-ТЕХНИЧЕСКИЕ ДАННЫЕ многоцелевой атомной ракетной подводной лодки К-141 проекта 949А («Антей)
Заложена в 1992 году в Северодвинске.
Спущена на воду в мае 1994 года.
Принята в эксплуатацию 30 декабря 1994 года.
Вошла в состав Северного флота в 1995 году.
Водоизмещение: надводное – 14 700 тонн,
Водоизмещение: подводное – 23 860 тонн.
Длина 154 метра.
Ширина 18, 2 метра.
Осадка 9, 2 метра.
Скорость в надводном положении 30 узлов,
Скорость в подводном положении 28 узлов.
Глубина погружения до 600 метров.
Главная энергетическая установка – два ядерных реактора ОК 650-Б, две паровые турбины по 90 л. с. каждая, два семилопастных гребных винта.
Вооружение – 24 крылатые ракеты П-700 («Гранит»), по 12 ракет с каждого борта.
4 торпедных аппарата калибра 533 мм и 2 торпедных аппарата калибра 650 мм. Максимальный боезапас первого отсека – 28 торпед и ракетоторпед.
Автономность – более 120 суток.
Район плавания – неограниченный.
Экипаж – 107 человек, в том числе 52 офицера.
Проект этой серии подводных лодок был разработан в Ленинграде – генеральным конструктором ЦКБ «Рубин» Игорем Барановым. Свою работу в этом качестве он начал в 1977 году. И.Л. Баранов – автор целого ряда оригинальных технических решений по созданию малошумных атомарин. Теоретические разработки и технические решения, выполненные им, обеспечили принципиальный рост боевой эффективности серийных проектов ПЛА – 949 и 949А.
В годы «перековки мечей на орала» Игорь Баранов предлагал переделать именно «антеи» для гражданского назначения – снять ракетно-торпедное оборудование и получить свободное пространство, куда бы вошло до 1000 тонн полезного груза. А если сделать врезку длиной до 30 метров, утверждал он, то на борт подводно-подледного контейнеровоза можно принимать и до 3500 тонн народнохозяйственных грузов… «Антеи» могли бы в кратчайшее время прокладывать торговые пути из Европы в страны Дальнего Востока под ледяным куполом Арктики.
Сегодня в составе ВМФ России находится десять атомных подводных лодок проекта 949А («Антей» или, по классификации НАТО, «Оскар-II»). Пять из них (К-148 «Краснодар», К-119 «Воронеж», К-410 «Смоленск», К-266 «Орел» и К-186 «Омск») приняты в эксплуатацию в период с 1986 по 1993 год и входят в состав Северного флота. К-141 «Курск» была шестой. Еще четыре (атомарины К-132 «Белгород», К-173 «Челябинск», К-442 «Томск» и К-456 «Касатка») несут свою службу на Тихоокеанском флоте1.
Проект 949А оказался настолько удачным, что серийное строительство «антеев» продолжается и в XXI веке.
Испытатель подводных лодок капитан 1-го ранга Михаил Волженский
ПОСЛЕ ВЗРЫВА
Как протекала катастрофа на атомной подводной лодке «Курск»
Частная версия
Прошло почти полгода с момента катастрофы АПЛ «Курск», которая воспринимается российским обществом и нами – бывшими подводниками – как полномасштабная многоплановая национальная трагедия.
Для выяснения обстоятельств и причин катастрофы 16 августа 2000 года была назначена правительственная комиссия.
Ни на секунду нельзя забывать, что работа правительственной комиссии проводится на народные деньги… Народ имеет право спрашивать, а комиссия обязана отчитываться перед народом…
За последние 40 лет в СССР и РФ было построено более 245 атомных подводных лодок. За этот период прошли специальную подготовку и прослужили более чем по пять лет на атомоходах более 200 000 офицеров и мичманов. (Эта цифра не учитывает тех, кто проходил на АПЛ срочную службу.) За этот же период участвовали непосредственно в строительстве и ремонте атомных подводных лодок Родины не менее 700 000 человек. (Эта цифра не учитывает тех, кто трудился на предприятиях, выпускающих для АПЛ комплектующие изделия.) С учетом сказанного можно смело утверждать, что значительная часть населения страны связала свою судьбу с атомным подводным флотом, вполне компетентно способна оценивать информацию, передаваемую СМИ о событиях, происходящих на флотах, и переживает за положение дел на флоте.
К этой части населения причисляю себя и я – автор этих строк.
Считаю, что три основные версии первопричины катастрофы определены правительственной комиссией верно. Столкновение с неопознанным подводным объектом, столкновение с миной, нештатная ситуация в первом отсеке…
Для нынешнего состояния информированности общества об обстоятельствах катастрофы считаю все три версии причин катастрофы равновероятными.
При рассмотрении версии «столкновение» считаю наиболее вероятным вариантом столкновение «Курска» с американской АПЛ.
Если рассматривать версию причины катастрофы – столкновение АПЛ с иностранной АПЛ, то наиболее корректным можно предполагать развитие событий в следующей последовательности.
Перед катастрофой, к 08.00 12 августа 2000 года, «Курск» прибыл в район проведения торпедных стрельб и находился милях в пятидесяти от отряда боевых кораблей (ОБК) – то есть один в большом районе моря, о чем и должен был доложить в очередном, последнем радиодонесении.
Надо полагать, что столкновение могло быть только не «лобовым», при котором столкнувшаяся АПЛ не имела бы шансов уйти с места аварии, а протекало по сценарию, изложенному ниже.
Иностранная АПЛ осуществляла слежение за АПЛ и вела гидроакустическую разведку, или, проще, вела запись подводного шума «Курска» на магнитную ленту. Дело это для американских подводников весьма прибыльное, так как за каждую минуту звукозаписи шумов ПЛ противника экипаж АПЛ получает дополнительное денежное вознаграждение…
Для летнего периода в арктических морях характерно явление, связанное с распространением звука в море, именуемое у гидроакустиков приповерхностным звуковым каналом. То есть в связи с тем, что верхние слои моря хорошо прогреты (до 8 – 10 °С), а нижние сохраняют обычную для Гольфстрима температуру (2 °С), звук от источника распространяется по глубинам слоями. Дистанции, на которые распространяется звук, в различных слоях неодинаковы. У поверхности звук распространяется, как правило, на значительные расстояния, гораздо большие, чем на глубинах среднего слоя (60 – 70 метров), на которых находились «Курск» и противник в момент слежения за «Курском». При переходе источника звука из одного слоя в другой контакт с источником звука теряется, если приемник сохраняет ранее занятую глубину. Все эти особенности распространения звука в море прекрасно знали и на «Курске», и на АПЛ противника.
Возможно, что «Курск» обнаружил следящую за ним АПЛ и решил донести о слежении командующему учениями. Для этого командир «Курска» объявил на борту учебную тревогу и после того, как личный состав разбежался по боевым постам и доложил о готовности, начал поэтапно всплывать на перископную глубину. Сначала АПЛ заняла безопасную глубину от столкновения с надводными кораблями (30 м), прослушала горизонт и кормовые курсовые углы, а потом, возможно, всплыла под перископ, подняла выдвижные устройства и начала описывать циркуляцию для осмотра горизонта визуально, готовясь передать радиодонесение.
Командир иностранной АПЛ в момент, когда «Курск» начал всплытие на безопасную глубину, потерял с ним акустический контакт и решил его восстановить «подскоком в упрежденную» точку. Для этого он развил кратковременно (минут на 20) ход до 12 – 14 узлов на безопасной для этой скорости глубине (60 м) и лег на курс догона. Но при расчете точки американец неправильно оценил последующее возможное маневрирование «Курска» или попросту «пожадничал» и наметил упрежденную точку в опасной, из-за возможности столкновения, зоне. Достигнув намеченной точки, он снизил скорость и всплыл в приповерхностный слой, в котором обнаружил прямо по курсу идущий на него «Курск», который заканчивал циркуляцию…
Интенсивность шума «Курска» на сонаре иностранной АПЛ резко возрастала… Было очевидно, что подводные лодки быстро сближаются…
У командира американской АПЛ складывалось впечатление, что пеленг на «Курск» медленно меняется вправо… Так как времени на определение элементов движения «Курска» не оставалось, он, для того чтобы избежать столкновения, скомандовал по наитию: «Руль лево на борт!..»
Нос АПЛ побежал по дуге циркуляции, корму начало заносить вправо, и в самом начале уклонения произошел удар, от которого АПЛ сильно тряхнуло, – правый горизонтальный стабилизатор, вместе с расположенными на нем перьями правого горизонтального и вертикального рулей, ударил по плоскости носовых торпедных аппаратов «Курска»…
Через мгновение за кормой АПЛ послышался сильный взрыв, от которого АПЛ ещё раз задрожала…
Несмотря на то что лодка стала хуже слушаться рулей, экипажу АПЛ удалось стабилизировать её движение по курсу и глубине (левые горизонтальный кормовой и вертикальный рули остались исправными, а винт АПЛ получил незначительные повреждения (или не получил повреждений)).
АПЛ сохраняет способность управляться по курсу и глубине и сохраняет главное качество подводной лодки – герметичность (плавучесть).
Через 135 секунд после столкновения, находясь в 3-4 кабельтовых от «Курска», на АПЛ услышали мощный взрыв, от которого корпус АПЛ содрогнулся. При этом на корпусе могло оказаться поврежденным как противогидролокационное покрытие, так и антенные клеевые покрытия… АПЛ уходит в ближайшую базу на ремонт…
Как заявили американцы, «даже если что-то и было бы, мы в этом никогда не признаемся».
В момент, предшествующий столкновению, «Курск» всплывал на перископную глубину или находился на перископной глубине, что подтверждается поднятыми на АПЛ выдвижными устройствами и тем, что личный состав находился на своих местах по боевому расписанию (это ясно из найденной записки капитан-лейтенанта Колесникова Д.Р.), а следовательно, скорость АПЛ была 6 – 8 узлов.
От удара стабилизатора горизонтального руля столкнувшейся АПЛ («гигантского молотка» массой 6900 т) по ограждению (щиту волнореза) торпедного аппарата «Курска» щит торпедного аппарата, передняя крышка и носовая часть торпедного аппарата, вместе с торпедой, которая в нем находится, получают значительные деформации – сминаются или расплющиваются.
В торпедном аппарате от полученных деформаций происходит первый взрыв (эквивалентный 100 кг тротила) – взрыв двигателя торпеды. От взрыва: разрушается задняя крышка торпедного аппарата и в торпедный отсек бьет столб огня; в первом отсеке АПЛ возникают короткие замыкания в силовой сети и начинается объемный пожар… Такова версия развития событий, связанная со столкновением АПЛ.
(Последующие рассуждения верны, если мощность первого взрыва оценена сейсмологами правильно и не является дезинформацией…)
Какой бы ни была причина, приведшая к взрыву, очевидно, что взрыв мощностью 100 кг тротила мог произойти на АПЛ только при взрыве двигателя парогазовой торпеды или, скорее всего, твердотопливной ракетоторпеды, размещенной в торпедном аппарате. На АПЛ не было других устройств, авария которых привела бы к взрыву указанной сейсмологами мощности.
Если бы авария двигателя произошла на стеллажах, первого взрыва не было бы – был бы объемный пожар. Как показывают практика и предварительные расчеты, в этом случае экипаж «Курска» имел бы достаточное количество возможностей предотвратить взрыв боезапаса…
Анализируя информацию правительственных СМИ, служившие на атомных подводных лодках специалисты могут нарисовать для себя картину развития катастрофы на «Курске»…
С вероятностью 0, 9 можно полагать, что после первого взрыва, вне зависимости от причин его происхождения, события на АПЛ развивались в следующей последовательности:
• личный состав 1-го отсека мгновенно погиб в результате взрыва;
• в отсек бьет раскаленная газовая струя из аварийного торпедного аппарата (ТА). По отсеку, с высокой кинетической энергией, разлетаются обломки оборудования, разнообразных «дельных вещей». Отбиваемые со штатных мест крепления струей газов, эти обломки рикошетируют от переборок и корпусных конструкций. (Возможно, через 135 секунд после первого взрыва удар рикошетом одного из таких обломков по разогретому пожаром боевому зарядному отделению (БЗО) боевой торпеды, хранящейся на стеллажах, и вызвал взрыв торпеды в отсеке, с одновременной детонацией всех стеллажных, боевых торпед…);
• выведены из строя системы аварийного орошения и затопления торпедного отсека, носовая станция и трубопроводы системы химического пожаротушения торпедного отсека или системы дистанционного управления ими;
• вероятно, разрушена или выведена из строя аккумуляторная батарея и носовая станция пенной системы пожаротушения (ВПЛ);
• в 1-м отсеке нарастают температура и давление (разрастается объемный пожар), в результате чего забортная вода не поступает в отсек и АПЛ сохраняет плавучесть;
• на АПЛ объявлена аварийная тревога (возможно, по аварийному телефону, так как водолазами установлено, что трубки аварийных телефонов вынуты из гнезд и висят на проводах), одновременно начато всплытие в позиционное, а, может быть, и в крейсерское положение.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33