А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Таким образом, снаряд получит нужный разгон я, после выключения тока из обмоток, вылетит по инерции из ствола.
Электропушка должна получать энергию для метания снаряда извне, от какого-либо источника электрического тока, или, иначе говоря, от машины. Чему же должна равняться мощность машины для стрельбы, например, из 76-миллиметровой электрической пушки?
Вспомним, что для метания снаряда из 76-миллиметровой огнестрельной пушки затрачивалась в шесть тысячных долей секунды огромная энергия в 113 000 килограмомметров, то-есть была необходима мощность в 250 000 лошадиных сил. Такая же мощность, конечно, необходима для стрельбы из любой и неогнестрельной 76-миллиметровой пушки, бросающей такой же снаряд на то же расстояние.

Рис. 26. Вот как выглядела бы электропушка средней мощности
Но в машине неизбежны потери. В лучшем случае они составят не менее 50% ее мощности. Значит, мощность машины при нашей электрической пушке должна быть никак не менее 500 000 лошадиных сил. Это – мощность огромной электростанции.
Значит, для стрельбы даже из небольшого электрического орудия нужна мощность огромной электрической станции.
Но мало этого. Для того чтобы сообщить необходимую для движения снаряда энергию в ничтожный промежуток времени, нужен ток огромной силы.
Чтобы выделить огромную энергию в ничтожно малый промежуток времени, нужно ввести на электростанции какое-то специальное оборудование. Применяемое теперь оборудование не выдержит того «удара», который последует при «коротком замыкании» очень сильного тока.
Если же удлинить время воздействия тока на снаряд, то-есть уменьшить мощность выстрела, тогда нужно удлинить ствол.
Совершенно не обязательно, чтобы выстрел «длился», например, одну сотую секунды. Делая 20 выстрелов в минуту, мы вполне могли бы удлинить время выстрела до одной секунды, то-есть в 100 раз. Но тогда примерно во столько же раз нужно было бы удлинить и ствол. Иначе не разогнать снаряда до нужной скорости.
Оказывается, в этом случае, для того чтобы бросить тот же 76-миллиметровый снаряд на полтора десятка километров, ствол электропушки пришлось бы сделать длиной около 200 метров.
Правда, при таком стволе мощность «метательной» электростанции понадобится уже значительно меньшая, тоже в 100 раз, то-есть в 5 000 лошадиных сил. Как видим, и эта мощность достаточно велика, а пушка очень длинна и громоздка.
На рисунке 26 показан один из проектов электропушки. Из рисунка видно, что о движении такого орудия с войсками по полю боя и думать не приходится; оно сможет перемещаться лишь по железной дороге.
Однако достоинств у электропушки все же много.
Нет огромного давления. Значит, снаряд можно сделать с тонкими стенками и поместить в нем гораздо больше взрывчатого вещества, чем в снаряд обычной пушки.
Кроме того, как показывают расчеты, из электропушки, при очень большой, правда, длине ее ствола, можно будет стрелять не на десятки, а на сотни и, может быть, даже на тысячи километров. Это не под силу современным орудиям.
Поэтому использование электричества для сверхдальней стрельбы в будущем весьма вероятно.
Но это касается будущего. Сейчас же, в наше время, порох в артиллерии незаменим, и нам, конечно, надо продолжать совершенствовать этот порох и учиться применять его наилучшим образом.

Глава третья
Сколько лет живет пушка


Как запереть газы в стволе
Мы уже знаем, что на открытом воздухе порох не взрывается, а сравнительно медленно горит. Нам же для выстрела нужен непременно взрыв. Иначе говоря, нам нужно, чтобы порох быстро превратился в газы.
Как это сделать?
Наиболее простое средство – это увеличить давление в том пространстве, где находится порох. А для этого мы должны поместить порох в замкнутое со всех сторон пространство, чтобы газам, образующимся при взрыве, некуда было уйти и они сразу же начали повышать давление. Большое давление нужно, очевидно, и для того, чтобы выбросить снаряд из ствола.
Таким замкнутым пространством является та часть ствола, в которую вкладывается пороховой заряд.
Спереди его как бы закупоривает вложенный в ствол снаряд.
Сзади, или, как говорят артиллеристы, с казенной части, ствол тоже должен быть прочно и плотно закрыт. Еще сто лет назад ствол в орудии отливали так, что он имел только одно отверстие: дуло. Сзади орудие отверстия не имело, и «дно» его не позволяло пороховым газам уходить назад при выстреле.
Много времени приходилось затрачивать для заряжания такого орудия. Вложив в дуло заряд, нужно было досылать его в глубь ствола длинным шестом с особым наконечником – прибойником. Когда заряд попадал на свое место, тогда тем же шестом забивали пыж.

Рис. 27. Так заряжали орудие в старину
Вспомним «Бородино»: «Забил заряд я в пушку туго»…
Затем вкладывали в дуло снаряд и опять-таки шестом толкали его в глубь ствола, пока он не доходил до пыжа (рис. 27).
Все эти неудобства были еще терпимы в те времена, когда орудия делались гладкоствольными. Но от гладкоствольных орудий отказались уже около ста лет тому назад и перешли к нарезным.
Основной недостаток гладкоствольных орудий заключался в незначительной их дальнобойности и в малой меткости. Шаровые снаряды, вкладываемые с дула, должны были свободно входить в ствол. Но при этом неизбежен был зазор – щель между снарядом и стенками канала ствола; в этот зазор при выстреле прорывались пороховые газы. Другая беда состояла в том, что шаровые снаряды быстро теряли скорость при полете в воздухе, и дальность их была невелика. Поэтому, естественно, появилось стремление заменить шаровые снаряды продолговатыми, с заостренной головной частью.
Такие снаряды, конечно, лучше должны прорезать воздух, потеря скорости в воздухе у них должна быть меньше.
Однако, если таким снарядом выстрелить из гладкостенного ствола, то снаряд не полетит головой вперед: он начнет кувыркаться в воздухе. А это сведет на-нет почти все преимущества продолговатого снаряда.
Чтобы избежать кувыркания снаряда в воздухе, оказывается нужно заставить его быстро вращаться при полете. Как же это сделать?
Надо придать ему вращение в то время, когда он движется еще в стволе.

Рис. 28. Ствол современного нарезного орудия
Для этого на внутренней поверхности ствола стали делать нарезы, то-есть желобки, вьющиеся по винтовой линии (рис. 28), а на снаряде поместили ведущий поясок, врезающийся в нарезы.

Рис. 29. «Предок» поршневого затвора
При движении в таком стволе снаряд с пояском вынужден вращаться.
Применять нарезные орудия в широких пределах смогли лишь тогда, когда техника позволила искусно резать металл точными инструментами на специальных станках. Лишь при машинном способе производства, на заводах, а не в кустарных мастерских, родилось современное нарезное орудие.

Рис. 30. Современный поршневой затвор

Рис. 31. Поворот поршня при закрывании затвора
В наше время орудия имеют уже не гладкие, а нарезные стволы. В такой нарезной ствол втолкнуть снаряд с дула уже значительно труднее: мешает поясок. Нужна большая сила, чтобы он врезался в нарезы. Мешает, впрочем, не только поясок. Попробуйте зарядить с дула современное длинноствольное дальнобойное орудие: до его поднятого вверх дула и не добраться.
Вот основные причины, почему теперь заряжают орудия не с дула, а с казенной части. Само собой разумеется, что ствол отливают теперь так, что он имеет уже не одно, а два отверстия – спереди (дуло) и сзади, откуда орудие заряжают.
Но это последнее отверстие должно быть открыто лишь при заряжании; при выстреле оно должно быть плотно закрыто. Поэтому пришлось казенную часть снабдить такой пробкой, которую можно было бы при заряжании вынимать, а перед выстрелом снова вставлять. Такой пробкой как раз и является затвор орудия. Затвор орудия должен очень прочно и плотно закрывать ствол, иначе образуется щель и в нее при выстреле прорвутся пороховые газы. Но, вместе с тем, затвор должен легко и быстро открываться для заряжания и так же легко и быстро закрываться после заряжания. Как же согласовать эти требования?
Этого удалось добиться не сразу: долго мешал низкий уровень техники обработки металлов. Однако заряжать орудия с казны и, следовательно, снабжать их затвором приходилось еще на заре развития огнестрельного оружия. Заряжание с дула было тогда невозможно, так как порох делался в виде липкой пороховой мякоти, прилипавшей к стенкам ствола при заряжании с дула. Поневоле приходилось применять затворы, хотя они далеко не удовлетворяли нашим требованиям. Один из затворов того времени показан на рисунке 29. Такой затвор запирал канал ствола достаточно прочно. Но чтобы открыть такой затвор, его нужно было много раз поворачивать вокруг оси, так как для прочности требуется много витков и все они должны работать. Слишком долго и неудобно.
Пороховые газы и при этом затворе все же прорывались, а нагар еще больше затруднял открывание и закрывание затвора.
Современные орудия (за редким, нетипичным исключением) заряжаются с казны и имеют затворы, по идее очень похожие на своих «предков». Но они несравнимо более совершенны и удобны.
Теперь, например, тоже применяют затвор в виде навинтованной пробки. Но нарезка на затворе и на затворном гнезде не сплошная: участки, имеющие нарезку, чередуются с гладкими.
Закрыть такой затвор не сложно: нужно поставить его так, чтобы его нарезные участки пришлись как раз против гладких участков в гнезде, и затем вдвинуть затвор. Теперь стоит только повернуть затвор, и нарезные его участки войдут в нарезные участки гнезда. Затвор прочно закроет ствол. Вместо многих оборотов нужно повернуть затвор всего на четверть оборота! И все витки будут удерживать затвор. Такие затворы называются поршневыми (рис. 30).
Держать вынутый затвор в руках было бы слишком тяжело и неудобно, да и направить его верно при закрывании было бы трудно: малейший перекос – и затвор не войдет.
Поэтому поршневые затворы всегда укрепляют на «раме». А рама шарнирно связана со стволом.
Затвор снабжен рукояткой. Ось рукоятки связывает затвор со стволом. Нажмем на ручку этой рукоятки и потянем ее назад от ствола. Сперва повернется поршень. Нарезные его участки встанут против гладких участков в гнезде. Ничто не мешает теперь поршню плавно выйти из гнезда ствола.

Рис. 32. Клиновой затвор. Сверху вниз: затвор открыт; затвор закрыт

Рис. 33. Поворот рукоятки заставляет клин переместиться и открыть ствол
Ствол открыт. Можно заряжать орудие.
После заряжания опять беремся за рукоятку и поворачиваем раму к стволу. Поршень легко войдет в свое гнездо и затем повернется на четверть оборота (рис. 31). Затвор закрыт.
Не менее удобен и клиновой затвор (рис. 32).
Клин помещается в затворном гнезде ствола и, в отличие от поршня, не нуждается в специальной раме; при открывании клин не совсем выходит из затворного гнезда и, таким образом, постоянно связан со стволом.
Для открывания и закрывания клинового затвора также имеется рукоятка. Поворот рукоятки заставляет клин переместиться в затворном гнезде и открыть ствол (рис. 33).
Для закрывания достаточно повернуть рукоятку к стволу: клин вдвинется в гнездо и закроет ствол.
Эти две системы затворов, наиболее простые и удобные, получили наибольшее распространение.
Теперь, когда мы знаем, как запираются современные орудия и как устроены их затворы, зарядим орудие.
Прежде всего нужно открыть затвор, а затем вложить снаряд и заряд в ствол.
Для помещения заряда и той части снаряда, которая, остается позади ведущего пояска, ствол внутри имеет «камору».
Когда орудие заряжается патроном, в котором снаряд и заряд в гильзе соединены вместе еще до заряжания, камора называется «патронником».
Камора или патронник обычно не цилиндрические, а слегка конические.
Камора шире нарезной части и соединяется с ней коротким коническим скатом.
Вложим снаряд и заряд в камору (рис.34). Теперь можно снова закрыть затвор.
Но один только затвор все же не обеспечивает нас полностью от прорыва пороховых газов назад: очень трудно совершенно точно подогнать поверхности затвора и ствола. А если останется малейшая, незаметная на взгляд щелка, пороховые газы непременно устремятся в нее. Чтобы помешать этому, применяются специальные приспособления – обтюраторы.
На рисунке 35 показан один из таких обтюраторов.
При таком устройстве орудия применяется «картузное» заряжание: заряд пороха помещается в особом мешке – картузе, который делается из нетлеющей (например, шелковой) ткани. Тлеющие после выстрела остатки картуза могли бы преждевременно воспламенить очередной заряд.

Рис. 34. Орудие заряжено

Рис. 35. Обтюратор для поршневых затворов

Рис. 36. Гильза в роли обтюратора (перед выстрелом и в момент выстрела)
В большинстве современных орудий применяется не картузное, а гильзовое заряжание: заряд помещают в латунную гильзу. При таком заряжании орудие не нуждается в специальных обтюраторах. Гильза не пропустит газов: при выстреле дно и стенки ее под давлением газов очень плотно прижмутся к затвору и к стенкам каморы. Значит, гильза и явится обтюратором (рис. 36).

Рис. 37. Вытяжная трубка
Гильза – очень простой и удобный обтюратор.
Помимо этого, очень часто гильза соединяет капсюль, заряд и снаряд в одном патроне, чем упрощается заряжание и повышается скорострельность.

Рис. 38. «Ударный механизм» до выстрела и в момент, когда курок оттянут и ударник соскочил с боевого взвода
Почему же не применяют гильзу во всех орудиях? Оказывается, в орудиях большого калибра применение гильзы усложняет заряжание. Гильза получается громоздкой и тяжелой. Соединение заряда со снарядом невыгодно из-за больших размеров и веса получаемого патрона. В некоторых орудиях применяют поэтому короткую гильзу, или поддон, служащий только обтюратором. В орудиях же очень крупного калибра и от поддона приходится отказаться и заменить его постоянным уже, известным нам, обтюратором (рис. 35).
Затвор закрыт, орудие заряжено, – можно стрелять. Нужно только зажечь заряд.
В орудиях с картузным заряжанием заряд воспламеняется с помощью вытяжной трубки (рис. 37) или электрозапала, вставляемых в запальный канал.
При гильзовом заряжании заряд воспламеняют с помощью уже знакомого нам капсюля, который помещается в капсюльной втулке, ввинченной в дно гильзы. А механизм, разбивающий капсюль, помещается в затворе. Называется он «ударным механизмом» (рис. 38).
Главной частью этого механизма является ударник с надетыми на нем трубкой ударника, боевой пружиной и гайкой. Нарезка на гайке шире, чем на ударнике, поэтому ударник может немного двигаться в навинченной гайке.
Один конец пружины упирается в кольцевой уступ в трубке ударника, а другой конец нажимает на гайку ударника и стремится продвинуть ее вместе с ударником вперед.
Если потянуть за курок, ударник пойдет назад, а трубка ударника – вперед; сожмется боевая пружина. При достаточном оттягивании курка боевой взвод ударника соскочит с зацепа курка и сжатая боевая пружина пошлет ударник вперед.
Гайка ударится в уступ затвора, а ударник по инерции пройдет еще несколько вперед; напомним, что он может немного двигаться в гайке благодаря ее широкой нарезке.
Боек ударника разобьет капсюль. Ударник, а затем и курок будут возвращены в исходное положение силой той же боевой пружины. Механизм готов к очередному выстрелу.
Произведем выстрел. Заряд воспламенится, сгорит и превратится в газы.
Затвор и гильза плотно запирают ствол. Прорыв пороховых газов назад невозможен. Но газы могут прорваться вперед, в зазоры между снарядом и стволом. При громадном давлении пороховых газов достаточно, как мы уже говорили, ничтожной щелки, чтобы газы смогли воспользоваться ею и произошла утечка.

Рис. 39. В старых орудиях часть газов прорывалась вперед, обгоняла ядро в стволе

Рис. 40. В современных орудиях прорыв газов вперед почти устранен
В гладкоствольных орудиях так обычно и происходило: часть газов прорывалась вперед, обгоняла снаряд, растрачивала свою энергию впустую (рис. 39).
Но в современных орудиях возможность этой утечки почти устранена.
Медный поясок снаряда, ведущий его по нарезам, в самом начале движения снаряда плотно вжимается в ствол и после этого уже не дает газам обогнать снаряд (рис. 40).
Казалось бы, теперь уже вся энергия порохового заряда направлена на дно снаряда. Казалось бы, нет больше места потерям!
Однако это не так.
Потери все же остаются, хотя, конечно, в гораздо меньшей степени, чем прежде.
Отдача
Орудие готово к выстрелу. Резко оттянут курок…
Сейчас произойдет выстрел!
Не бойтесь, не зажмуривайте глаз и посмотрите на орудие в момент выстрела. Резкий звук… Из дульной части вслед за снарядом вырывается яркий длинный язык пламени.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16