Но оглянемся в не столь уж и далекое прошлое. В 1772 году Парижская академия наук за подписью «самого» А.Л.Лавуазье (1743-1794), одного из основоположников современной химии, опубликовала документ, в котором утверждалось, что падение камней с неба физически невозможно. В 1790 году во Франции падение метеорита было официально засвидетельствовано весьма авторитетными людьми, среди которых был мэр и члены городской ратуши. О случившемся был составлен даже официальный протокол, который, как казалось, не оставлял никакого места для сомнений. Однако и это не помешало одному из членов этой академии, «бессмертному» Клоду Л. Бертолле (1748-1822), высказать свое сожаление о том, что такие серьезные люди позволяют себе протоколировать то, что противоречит законам не только физики, но и самого разума.
Апостолы века просвещения, они верили только одному – разуму. Вершиной же разума для того времени были законы Ньютона. А эти законы, как думалось им, категорически исключали возможность такого невероятного события. В самом деле: для того, чтобы упасть с неба, камень прежде должен подняться туда. А вот именно это-то и запрещалось самим духом физических законов.
Прошло совсем немного времени, и в 1803 году в окрестностях французского городка Легль выпал целый дождь из настоящих камней. Это обстоятельство заставило даже академиков признать реальность метеоритов.
В общем (как это будет еще не раз), оказалось, что, кроме законов самой «продвинутой» для того времени науки, в мире существует и какой-то другой – куда более широкий – контекст явлений, и именно этот контекст скрывает в себе последние тайны бытия…
Некоторая неопределенность претендующей на всеобщность формулы, вынесенной в заглавие нашего исследования, предполагает, что подвергаться сложению друг с другом может все, что угодно. Иными словами, некая исходная форма 2 + 2 = ? может быть преобразована в алгебраическое уравнение: 2х + 2у = ? , в котором место неизвестных «x» и «y» могут занять без исключения любые вещи. Однако строгое соблюдение требований предельной конкретности, решительное искоренение всякой отвлеченности и приблизительности все-таки требует от нас противопоставить затверженному в детстве постулату «дваплюсдваравночетыре» встречный уточняющий вопрос:
«Два чего и два чего?».
Ведь прежде всего мы обязаны убедиться в том, действительно ли эта формула не знает никаких исключений, в самом ли деле на место «х» и на место «у» могут быть поставлены любые объекты, процессы, явления, или все же существуют какие-то ограничения?
Если мы пренебрегаем таким уточнением, конкретизацией этой – лишь поначалу кажущейся понятной и однозначно интерпретируемой – задачи, мы по сути дела расписываемся в принципиальной неготовности к самостоятельной исследовательской научной работе. Иначе говоря, расписываемся в том, что большая наука – вовсе не для нас.
Между тем именно здесь, в этом иногда и вправду звучащим издевательски вопросе: сколько будет 2+2? кроется столько подводных камней, что, может быть, и не снилось вступающему в науку. Мы часто пользуемся им как своего рода тестом, призванным определить интеллектуальную вменяемость нашего собеседника. Но вот пример, пусть и взятый из старого анекдота, однако вполне способный показать всю сложность поставленной здесь задачи:
«Сколько будет, если сложить два ежа и два ужа?».
Пусть нас не вводит в заблуждение то, что это всего-навсего анекдот, и его ответ («четыре метра колючей проволоки»), как и положено анекдоту, предельно парадоксален и вместе с тем весьма находчив.
Ведь этот же вопрос можно задать не только в шутку, но и всерьез, а следовательно, мы вправе ожидать на него вполне серьезный конкретный и точный ответ. Конечно, в этом случае проще всего отделаться ссылкой на очевидную даже для младшего школьника идиотичность задачи, отговориться умствованием по поводу того, что один дурак способен задать столько вопросов, что их не разрешит и сотня мудрецов. Можно и просто покрутить пальцем у виска. А между тем столь же идиотичных вопросов может быть поставлено сколь угодно много: сколько будет, если сложить два паровых утюга и две аксиомы Евклида, две египетские пирамиды и две страховые конторы… И так далее до бесконечности.
Но почему, собственно, эти вопросы свидетельствуют об умственной неполноценности того, кто их задает? Почему они не имеют права на постановку?
Ведь если задуматься, то в нашей повседневности нам постоянно приходится разрешать именно такие задачи. Вот например: Сколько будет, если сложить два «градуса» и два «метра в секунду»?
Казалось бы, идиотичности в нем ничуть не меньше: в самом деле, что может быть более бредовым и диким, чем сопоставление таких чуждых друг другу материй? А между тем в действительности он имеет весьма и весьма практическое значение. Специалисты по технике безопасности и профгигиене, знают, что при определении допустимых термических нагрузок на человеческий организм значение имеет не только (и, может быть, не столько) номинальная температура воздуха, но и скорость его движения, и его влажность. Известно, что чем выше численные значения последних, тем больше опасность поражения органических тканей. Своеобразная сумма всех этих трех параметров, (она рассчитывается по специально разработанным для этого номограммам), образует собой совершенно новое синтетическое, то есть объединяющее характеристики «слагаемых», понятие так называемой, «эффективной эквивалентной температуры». Это синтетическое понятие при определении физиологических реакций нашего организма на микроклиматические аномалии является гораздо более конкретным и точным, чем «просто» температура. Ведь известно, что номинально одна и та же температура может совершенно по-разному переноситься человеком, и любой, кто знаком с Крайним Севером России, никогда не поставит в один ряд с морозами Норильска морозы Карелии, Якутии или Сибири.
Или вот еще пример: «Сколько будет, если сложить две лошади и две коровы?»
Собственно, чем она отличается от таких же, «идиотских», задач, от которых, по логике приведенной выше пословицы, вправе отмахнуться любой, кто претендует на мудрость? Ведь лошади и коровы – любой биолог это охотно подтвердит – столь же несопоставимы между собой, сколь электрические утюги и страховые конторы, пароходы и египетские пирамиды. Это совершенно разные биологические виды, на скрещивание которых сама природа накладывает свое вето. А это, если следовать приведенной выше логике («один дурак способен…»), значит, что и такая задача вообще не имеет права быть поставленной.
Но все это тоже только на первый взгляд, потому что уже на второй мы обнаруживаем и ее острую практическую значимость. Сама жизнь постоянно требует от нас умения решать задачи именно такого рода. А следовательно, сама жизнь подтверждает не только полное право на их практическую постановку, но и острую потребность в некоторой единой методике их разрешения. Но ведь если можно проводить количественное сопоставление одних – казалось бы, совершенно несопоставимых друг с другом – объектов, то почему неразумно ставить вопрос о соизмерении каких-то других? Или, может быть, все дело в размерах той качественной дистанции, которая отделяет явления одного круга от явлений другого? Но тогда закономерен другой вопрос: где критерии критичности этой дистанции, критерии того, что она становится запредельной, недоступной для каких бы то ни было количественных сопоставлений?
Словом, ссылка на чью-то глупость отнюдь не разрешает стоящую здесь проблему.
Но вместе с тем явным позитивом всех обнаруживаемых противоречий является то, что они обнажают первый из подводных камней, которые скрываются под кажущейся простотой вынесенного в заголовок вопроса. Оказывается, прямому сложению могут подвергаться далеко не все, но только родственные друг другу, близкие по своим свойствам вещи. Сложение же объектов, относящихся к разным сферам бытия, говоря философским языком, качественно несопоставимых начал, требует от нас предварительного выполнения какой-то сложной интеллектуальной работы.
В старое время во всех советских ВУЗах в обязательном порядке, независимо от специализации института, преподавали политическую экономию. Ясно, что политэкономия тогда начиналась с первого тома «Капитала» великого немецкого мыслителя Карла Маркса (1818-1883). Поэтому уже на первой лекции, когда только заходила речь о товарообмене и его основных законах, студентам приводилось известное ещё из первой главы «Капитала» положение о том, что прежде чем подвергать вещи количественному соизмерению, их нужно привести к одному «качеству». Иными словами, для того, чтобы на рынке между совершенно разнородными товарами могли устанавливаться какие-то количественные пропорции (два костюма равны одной швейной машинке, две буханки хлеба – одной кружке пива и так далее) нужно привести их к какому-то общему знаменателю.
Вот как об этом говорит К.Маркс. «Возьмем, далее, два товара, например пшеницу и железо. Каково бы ни было их меновое отношение, его всегда можно выразить уравнением, в котором данное количество пшеницы приравнивается известному количеству железа, например: 1 квартер пшеницы = а центнерам железа. Что говорит нам это уравнение? Что в двух различных вещах – в 1 квартере пшеницы и в а центнерах железа – существует нечто общее равной величины. Следовательно, обе эти вещи равны чему-то третьему, которое само по себе не есть ни первая, ни вторая из них. Таким образом, каждая из них, поскольку она есть меновая стоимость, должна быть сводима к этому третьему.»
Этим общим знаменателем у К.Маркса выступала стоимость, то есть количество труда, воплощенного в любом товаре.
Сегодня на работы К.Маркса принято смотреть свысока. Между тем, несмотря на скептическое отношение ко многим его теоретическим выводам, он был и остается одним из величайших мыслителей всех времен и народов. И это его положение о том, что количественное сравнение разнородных вещей требует предварительного приведения их к какому-то единому основанию, является одним из завоеваний общечеловеческой мысли. (Правда, до него об этом говорил еще Гегель, великий Георг Вильгельм Фридрих Гегель (1770-1831), создавший учение, которое до сих пор безоговорочно признается вершиной философской мысли. Но тот тяжелый язык, которым он излагал свои взгляды, делал их доступными лишь немногим, К.Маркс же, во-первых, придал этому утверждению необходимую прозрачность и четкость, во-вторых, убедительно доказал его всей логикой своего «Капитала».)
Мы сделали отступление к К.Марксу для того, чтобы показать, что в действительности, совершая на первый взгляд интеллектуально непритязательную операцию сложения, мы всякий раз выполняем отнюдь не механическую, но сложнейшую умственную работу, которая требует от нас мобилизации многих наших знаний о самых фундаментальных взаимосвязях окружающего мира. И заметим: эта работа проходит в каких-то более глубинных слоях нашего сознания, нежели те, которые активизируются нами (и остаются подконтрольными нам) при решении рутинных житейских задач.
Действительно, складывая лошадей и коров, мы от «парно-» и «непарнокопытных» восходим к какому-то более высокому классу явлений, то есть к некоторой обобщающей категории «домашнего скота», и только благодаря этому восхождению получаем вполне вразумительный результат. Пусть даже мы и не знаем таких признаков классификации, как «парно-» и «непарнокопытность», мы все же интуитивно понимаем существующую здесь разницу и пытаемся найти – и находим – некое обобщающее их начало. Нам не составит труда сложить те же утюги, пароходы с египетскими пирамидами, если и здесь мы выйдем на более высокий уровень обобщения, иными словами, если и в том и в другом будем видеть просто «материальный объект». При особой нужде мы сложим с теми же утюгами, пароходами и пирамидами Гизы моцартовские фортепьянные концерты, если, конечно, сумеем разглядеть в том и в другом продукт человеческого творчества. И так далее.
Все это и есть предварительное приведение разнородных вещей к какому-то единому основанию сравнения, к общему «качеству». Но для того, чтобы найти то обобщающее начало, которое позволит нам проводить необходимые количественные сопоставления, нужно прежде всего серьезно покопаться в нашем собственном умственном багаже, ибо единое «качество», в котором можно растворить столь разнородные вещи, совсем не очевидно. Поэтому далеко не во всех случаях искомое основание количественного сравнения находится нами – очень многое зависит от уровня нашей образованности, от той степени свободы, с какой мы ориентируемся в мире общих абстрактных представлений. Кроме того, интеллектуальный багаж – это одно, а умение им распорядиться – совсем другое, поэтому нужны не только умения, но и твердые навыки этой интеллектуальной работы, которые позволяют выполнять ее большей частью автоматически. Процедура приведения к единому «знаменателю» совершенно разнородных явлений окружающего нас мира – это тоже элемент нашего умственного потенциала, интеллектуальной культуры, и если нет навыков такой работы, мы оказываемся в тупике.
Как бы то ни было, складывая разнородные вещи, мы, чаще всего сами того не замечая, совершаем одну из сложнейших логических операций. Именно логических: ведь, уже только упомянув понятия «количества» или «качества», мы незаметно для самих себя вступаем в сферу логики. Правда, не формальной, а именно той категориальной или, иными словами, диалектической логики, которая составляет ключевой раздел современной философии, ибо эти понятия представляют собой одни из ее основных категорий.
В отличие от формальной, задача которой, главным образом, состоит в том, чтобы полностью исключить какие бы то ни было противоречия в выполняемых нами теоретических построениях, эта логика уже в самом наличии противоречия видит опорный ориентир на пути к истине. Кроме того, опять же в отличие от формальной, она способна оперировать вполне содержательными понятиями.
Основы этой логики были заложены Иммануилом Кантом (1724–1804), великим немецким мыслителем, родоначальником немецкой классической философии, профессором университета в Кенигсберге (мы еще будем говорить о нем) в его «Критике чистого разума», и впоследствии существенно дополнены и развиты Гегелем. Но гегелевская «Наука логики» – это предмет куда более фундаментального знакомства с философией, чем то, которое предполагается настоящим Введением. Поэтому здесь мы ограничимся самыми началами.
Основные категории или, как их называет сам Кант, «чистые рассудочные понятия» сводятся им в специальную таблицу по четырем группам, каждая из которых объединяет в себе взаимосвязанные и взаимозависимые начала этой новой логики:
– количества: единство, множество, целокупность;
– качества: реальность, отрицание, ограничение;
– отношения: присущность и самостоятельное существование, причина и следствие, взаимодействие;
– модальности: возможность–невозможность, существование–несуществование, необходимость–случайность.
Останавливаться на содержании этих категорий здесь мы не будем, ибо это также предмет более детального разбора, общий же их смысл ясен интуитивно.
Кант говорит, что эти категории полностью исчерпывают собой все присущие сознанию логические схемы, в соответствии с которыми человек только и может организовывать свое познание окружающей действительности. В этом пункте его существенно поправит Гегель, который дополнит кантовский список многими другими философскими понятиями. Но сейчас нам важно вовсе не то, в чем ошибался великий мыслитель (кстати, не такая это и ошибка, ибо построение диалектической логики не завершено и по сию пору). Здесь мы хотим подчеркнуть то, что только постижение основ именно этой – категориальной – логики делает исследователя исследователем.
Заметим еще одно обстоятельство, которое прямо вытекает из основоположений кантовского учения. Это заключение сразу же будет воспринято его преемниками и во всем блеске проявит себя в гегелевской системе. Существо его сводится к тому, что любая вещь, попадающая в сферу нашего анализа, в обязательном порядке проходит сквозь строй всех логических категорий. Нет такого, чтобы одни подчинялись каким-то одним категориям из этого общего списка, другие – другим. Как весь окружающий нас мир собирается в точке оптического фокуса, так каждое понятие концентрирует в себе аппарат всей логики без изъятия. А это значит, что пристальный анализ способен в любом отдельном понятии найти явственные следы всего категориального макроскосма. Больше того:
Это ознакомительный отрывок книги. Данная книга защищена авторским правом. Для получения полной версии книги обратитесь к нашему партнеру - распространителю легального контента "ЛитРес":
Полная версия книги 'Сколько будет 2+2?'
1 2 3