Назовём «чистым» художником того, чьи картины висят в музеях, а «прикладным» того, чьи произведения украшают жилище. Тогда Моне и Ренуар – прикладные художники для тех, кто может себе позволить заплатить двадцать тысяч долларов за картину. Для остальных грешных, в том числе и для нас с вами, они чистые художники. Я не уверен только, к какой категории отнести портретиста, за исключением, пожалуй, того случая, когда его картина называется, «Портрет мужчины» и висит в музее, – тогда он, несомненно, чистый художник. Я уверен, что многие современные живописцы ждут, что я отнесу к чистым художникам тех, чьи произведения ни на что не похожи и никому не понятны, а всех остальных – к прикладным. Среди физиков такое тоже встречается.
Законченный пример прикладного искусства, казалось бы, должна являть собой архитектура. Однако отметим, что существует такое течение, которое называется «функционализм»; сторонники его стоят на том, что все части здания должны соответствовать своему назначению и служить необходимыми деталями общей конструкции. Само существование такой доктрины говорит о том, что есть строения, имеющие детали, в которых конструкция здания вообще не нуждается и без которых вполне могла бы обойтись. Это очевидно для всякого, кто видел лепной карниз. Теневая сторона этой доктрины заключается в том, что она запрещает наслаждаться зрелищем величественного готического собора до тех пор, пока инженер с логарифмической линейкой в руках не докажет вам, что здание рухнет, если вы удалите хоть какую нибудь из этих изящных арок и воздушных подпорок. А как быть с витражами? Они:
а) функциональны (способствуют созданию мистического настроения и как-никак это окна),
б) декоративны (нравятся туристам),
в) антифункциональны (задерживают свет).
Первая точка зрения принадлежит художникам, создавшим окна собора в Шартре, вторую разделяют гиды, а третьей придерживались в восемнадцатом столетии прихожане, которые выбили эти окна, чтоб улучшить освещение, и забросили драгоценные осколки в мусорные ямы.
Итак, в соборе нелегко отделить функциональное от декоративного. Но так и в науке. И если некоторые тончайшие черты в облике готических соборов обязаны своим происхождением тому простому факту, что тогда в распоряжении зодчих не было стальных балок, а современные строители, в распоряжении которых эти балки есть возводят здания, которым таинственным образом не хватает чего-то, что нам нравится в древних соборах, то аналогии этому мы можем найти, сравнивая классическую физику с теориями наших дней…
Попробуем заменить названия «чистая» и «прикладная» физика словами «декоративная» и «функциональная». Но это тоже плохо. Прикладная физика – либо физика, либо не физика. В первом случае в словосочетании «прикладная физика» следует отбросить прилагательное, во втором – существительное. Архитектура остаётся архитектурой независимо от того, создаёт она здание Организации Объединённых Наций или Сент-Шапель. Музыка есть музыка – в венском вальсе и в органном хорале, а живопись и в портретном жанре, и в пейзажном – всё живопись. И физика есть физика – объясняет ли она устройство телевизора или спектр гелия.
Однако различие в действительности должно быть всё-таки больше, чем я склонен был признать до сих пор, поскольку люди постоянно твердят о «фундаментальных исследованиях», предполагая, таким образом, существование чего-то противоположного, «нефундаментального». Хорошее определение «фундаментального исследования» все будут приветствовать. Попробуем изобрести его.
Начать следует, разумеется, с определения, что такое исследование. К несчастью, понятие это содержит в себе негативный элемент. Исследование – это поиски, когда вы не знаете, что найдёте; а если вы знаете, значит уже нашли, и вашу деятельность нельзя назвать исследовательской. Но если результат ваших исследовании неизвестен, откуда вы знаете, что он будет фундаментальным?
Чтобы выйти из этого тупика, попытаемся отнести понятие фундаментальности не к конечному результату исследований, а к самому процессу исследования. Мы можем, например, назвать фундаментальными такие исследования, которые ведутся независимо от того, будут ли результаты иметь практическое значение или не будут. Между прочим, здесь не следует перегибать палку. Было бы неблагоразумно определять фундаментальные исследования, как такие исследования, которые прекращаются, как только появляются признаки того, что результаты могут быть применены на практике. Такая концепция рискует навлечь на себя гнев финансирующих организаций. Но даже самого трудного и скаредного финансиста можно ублажить, сказав, что фундаментальные исследования – это те, которые не дают немедленного практического выхода, но наверняка дадут таковой рано или поздно.
Увы, и это определение не вполне удовлетворительно. Оно оставляет впечатление, что вы перед кем-то оправдываетесь, а это уже признак вины. Неужели нельзя определить фундаментальное исследование так, чтобы оно представляло ценность само по себе, без всякой связи с будущими практическими приложениями?
Назовём фундаментальными такие исследования, которые расширяют и продвигают теорию физических явлений. Следовательно, нам придётся немного по теоретизировать насчёт теории.
Существует несколько точек зрения на теорию. Одна из них состоит в том, что теория раскрывает нам глубинную простоту и стройность мироздания. Не теоретик видит лишь бессмысленное нагромождение явлений. Когда он становится теоретиком, явления укладываются в стройную и исполненную величия систему. Но, к сожалению, в последнее время благодаря квантовой механике и теории поля всё большее число людей, выбирая из двух зол меньшее, нагромождение явлений предпочитают нагромождению теорий.
Другую точку зрения высказал недавно Кондон. Он полагает, что теория должна дать нам возможность рассчитать результат эксперимента за более короткое время, чем понадобится для проведения самого эксперимента. Не соглашаться с Кондоном опасно, так как обычно он оказывается прав; но я не думаю, что это определение приятно теоретикам; они обрекаются, таким образом, на бесконечную игру в салочки, которую заведомо проиграют в таких, например, случаях, как при установлении сопротивления серебряного провода или длины волны некоторой линии в спектре германия.
Согласно другой точке зрения, теория должна служить для придумывания новых экспериментов. Здесь есть разумное начало, но это низводит теоретика до положения служанки экспериментатора, а эта роль ему вряд ли понравится.
Есть ещё одна точка зрения, что теория должна охлаждать горячие головы и не допускать потери времени на бесполезные эксперименты. Я предполагаю, что только изучение законов термодинамики пресекло некоторые попытки создать поистине невозможные тепловые двигатели.
Давайте польстим теории и дадим ей определение, которое не будет сводить её ни к хитроумному приспособлению для экономии времени, ни к прислуге эксперимента. Предлагаю считать, что теория – это интеллектуальный собор, воздвигнутый, если хотите, во славу божию и приносящий глубокое удовлетворение как архитектору, так и зрителю. Я не стану называть теорию отражением действительности. Слово «действительность» пугает меня, поскольку я подозреваю, что философы знают точно, что оно значит, а я не знаю и могу сказать что-нибудь такое, что их обидит. Но сказать, что теория – вещь красивая, я не постесняюсь, поскольку красота – дело вкуса, и тут я философов не боюсь. Разовьём нашу аналогии с собором.
Средневековые соборы никогда не бывали законченным строительством. Это же можно сказать и про физические теории. То деньги кончались, то архитектурная мода менялась. В последнем случае старая часть собора иногда разрушалась, а иногда к ней просто пристраивалась новая. Можно найти строгие и массивные римские хоры в мирном соседстве с парящей готической аркой, которая близка к границе опасной неустойчивости. Римские хоры – это классическая физика, а готическая арка – квантовая механика. Я напомню вам, что арка собора в Бовэ обрушивалась дважды (или даже трижды), прежде чем архитекторы пересмотрели свои планы и построили нечто, способное не упасть. Собор состоит обычно из нескольких часовен. Часовня физики твёрдого тела имеет лишь самое отдалённое отношение к часовне теории относительности, а часовня акустики вообще никак не связана с часовней физики элементарных частиц. Люди, молящиеся в одной из часовен вполне могут обходиться без остальной части собора; их часовня может устоять, даже если всё остальное здание рухнет. Сам собор может казаться величественным даже тем, кто не верит в бога, да и тем, кто построил бы совсем другое здание, будь он в состоянии начать всё сначала.
Остаток своей речи я хочу посвятить совсем другому вопросу. Мы восхищаемся нашим величественным собором. Как заразить молодёжь этим восхищением? Как заманить в физику будущих ферми, кондонов, слэтеров?
Обычный в этих случаях метод – удивить, потрясти. Беда в том, что человека нельзя удивить, если он не знаком с той ситуацией, в которую ваш сюрприз вносит решающие изменения. Не так давно я прочёл, что некто проплыл 100 ярдов за 49 секунд. Это совершенно меня не удивило, потому что я не знал, чему равнялся старый рекорд – 39, 59 или 99 секундам. Но я читал дальше и обнаружил, что старый рекорд составлял 51 секунду и держался в течение нескольких лет. Первое сообщение теперь пробудило во мне слабый интерес – едва отличный от нуля, но по-прежнему никакого удивления! Теперь представьте себе физика, меня, например, который пытается удивить аудиторию, состоящую из дилетантов, сообщением о том, что сейчас вместо двух элементарных частиц мы знаем целую дюжину или что олово совсем не оказывает сопротивления электрическому току при температурах ниже некоторой, а новейший циклотрон разгоняет протоны до энергии 500 Мэв . Ну и что? Это просто не даёт эффекта!
И если я оснащу своё сообщение экстравагантными утверждениями, это произведёт не больше впечатления, чем размахивание руками и крики лектора перед глухонемой аудиторией.
Ошибочно также мнение, что аудиторию можно потрясти, продемонстрировав решение какой-нибудь загадки. Беда здесь в том, что никто не заинтересуется ответом на вопрос, которого он не задавал. Автор детективных рассказов всегда создаёт тайну, прежде чем её решать. Можно было бы последовать его примеру, но труп неизвестного человека, с которого обычно начинается детектив, – зрелище существенно более захватывающее, чем труп известной теории, с которого должен начать физик.
Другой способ: можно пообещать любому вступающему в наш собор, что там он найдёт удовлетворение своему стремлению к чему-то неизменному, постоянному, вечному и бессмертному. Это фундаментальное стремление, поскольку оно постоянно фигурирует в произведениях мистиков, поэтов, философов и учёных. Лукреций считал, что он удовлетворил это желание, сказав, что атомы вечны. Это была прекрасная идея, но, к несчастью, Лукреций понятия не имел о том, что такое атомы. Представлениям древних об атомах ближе всего соответствуют, по-видимому, наши элементарные частицы, но – какая неудача! – ни один из членов этого беспокойного и таинственного семейства не является бессмертным, пожалуй, за исключением протона, но и его бессмертие висит на волоске: как только где-нибудь поблизости появится антипротон, он в самоубийственном столкновении сразу же прикончит соседа. Наши предшественники столетиями пытались найти этот «вечный атом», и теперь, докопавшись до того, что они считали гранитной скалой, мы обнаружили, что по-прежнему стоим на зыбучем песке. Так будем ли мы продолжать говорить о величии и простоте нашей картины мира? Величие, пожалуй, но простота, которая была очевидна Ньютону и Лапласу, – простота ушла вдогонку за «вечным атомом» Лукреция. Её нет, она утонула в волнах квантовой механики. Я подозреваю, что в каждой отрасли физики можно показать новичку хорошую, поучительную и соблазнительную картину – только если не пытаться копать слишком глубоко . Напечатано в журнале «Physics Today», 4, № 11 (1951)
– • • • –
Без слов
Прошлое и будущее теории поля
в теоретической модели, основанной на экспериментальных наблюдениях, достоверных с точностью до одного стандартного отклонения.
Наблюдатель Обычно хорошо информированный
(обычно хорошо информированный)
Чтобы понять всё значение теории поля, необходимо рассмотреть этот предмет на соответствующем историческом фоне. К 1930 году физика объяснила все наблюдаемые величины. И с тех пор занималась величинами только ненаблюдаемыми, которые и являются предметом рассмотрения в теории поля В работе Престона [Reviews of Unclear Physics, 1, № 1, 3 (1957)] приводится следующее описание и классификация ненаблюдаемых величин: «Хорошо известно, что физические величины описываются матрицами, собственные векторы которых образуют гильбертово пространство. Но эти матрицы – лишь небольшой класс среди всевозможных математических объектов, и очевидно, что безработных операторов очень много. Чтобы хоть некоторые из них использовать, можно предположить, что они соответствуют ненаблюдаемым величинам. Однако эти ненаблюдаемые величины ещё так плохо изучены, что разработка соответствующей математической теории является преждевременной.
Ненаблюдаемые явления можно разбить на следующие категории, расположенные в порядке убывания научного интереса, который они представляют:
а) явления, ненаблюдаемые по определению (например, невидимый свет);
б) явления, ненаблюдаемые в принципе (например, абсолютная скорость);
в) явления. ненаблюдаемые в природе (например, потомство от стерильных кроликов);
г) явления, ненаблюдаемые в обществе воспитанных людей (например. несохранение чётности до 1956 года). Последний пример показывает, что ненаблюдаемость не является интегралом движения».
Эта классификация иллюстрируется рис. 1.
Рис. 1 Ненаблюдаемая величина
– Прим. ред.
.
К тому же времени относится открытие Клейна. Ему мы обязаны уравнением, которое пишется одинаково как в неподвижной, так и в движущейся системах координат, например уравнение получается одинаковым независимо от того, пишете ли вы его сидя или на бегу (давняя мечта теоретиков).
В конце 40-х годов теория получила мощный толчок благодаря открытию знаменитого Лэмбовского сдвига. Вместо формул теоретики-полевики начали рисовать картинки, причём часто делали это на обратной стороне старых конвертов, тем самым существенно снижая затраты на теоретические исследования. Стоимость же экспериментальных исследований в этот период существенно возросла, чему способствовали неутомимые экспериментаторы, которые, докапываясь до неслыханных глубин, извлекали оттуда на объяснение своим друзьям-теоретикам один лакомый кусочек за другим по средней цене 10^6 долларов за кусочек. Все, однако, были согласны, что результаты стоили этих затрат, тем более, что затраты были направлены на общее благо и покрывались, естественно, за счёт налогоплательщиков.
Таким образом, Физика неотвратимо вступила в сильное взаимодействие с Правительством. Возможно, этим объясняется тот факт, что в 50-е годы в деятельности правительства всё сильнее стали замечаться проявления принципа наименьшего действия.
И вот, наконец, прикрываясь Римановыми листами, теоретики пробили себе дорогу в нефизические области и обнаружили, что всё имеет свою мнимую часть. В последнее время крепнет подозрение, что и сам объект исследования – амплитуда рассеяния – величина чисто мнимая…
Все уверены в том, что теория поля откроет в физике новую героическую эпоху, но когда это случится – сейчас ещё не время предсказывать.
Будущее теории поля лежит в аналитическом продолжении всего, что только можно, в комплексную плоскость. В одной из ранних работ было предложено продолжить в комплексную область квантовое число «странность» с тем, чтобы научиться классифицировать те чисто мнимые частицы, об открытии которых постоянно сообщает «Нью-Йорк таймс».
Там же предлагалось продолжить аналитически «двухкомпонентную теорию», чтобы получить «двухкомпонентный эксперимент», имеющий две составляющие – «Правильную» и «Неправильную». Хорошая двухкомпонентная теория должна точно описывать обе компоненты эксперимента.
Дисперсионные соотношения и коэффициенты Рака тоже нужно исследовать с этой точки зрения. Вычисление значений этих (и других) коэффициентов для комплексных значений аргументов обещает вдумчивому исследователю много незабываемых часов у электронно-вычислительной машины.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Законченный пример прикладного искусства, казалось бы, должна являть собой архитектура. Однако отметим, что существует такое течение, которое называется «функционализм»; сторонники его стоят на том, что все части здания должны соответствовать своему назначению и служить необходимыми деталями общей конструкции. Само существование такой доктрины говорит о том, что есть строения, имеющие детали, в которых конструкция здания вообще не нуждается и без которых вполне могла бы обойтись. Это очевидно для всякого, кто видел лепной карниз. Теневая сторона этой доктрины заключается в том, что она запрещает наслаждаться зрелищем величественного готического собора до тех пор, пока инженер с логарифмической линейкой в руках не докажет вам, что здание рухнет, если вы удалите хоть какую нибудь из этих изящных арок и воздушных подпорок. А как быть с витражами? Они:
а) функциональны (способствуют созданию мистического настроения и как-никак это окна),
б) декоративны (нравятся туристам),
в) антифункциональны (задерживают свет).
Первая точка зрения принадлежит художникам, создавшим окна собора в Шартре, вторую разделяют гиды, а третьей придерживались в восемнадцатом столетии прихожане, которые выбили эти окна, чтоб улучшить освещение, и забросили драгоценные осколки в мусорные ямы.
Итак, в соборе нелегко отделить функциональное от декоративного. Но так и в науке. И если некоторые тончайшие черты в облике готических соборов обязаны своим происхождением тому простому факту, что тогда в распоряжении зодчих не было стальных балок, а современные строители, в распоряжении которых эти балки есть возводят здания, которым таинственным образом не хватает чего-то, что нам нравится в древних соборах, то аналогии этому мы можем найти, сравнивая классическую физику с теориями наших дней…
Попробуем заменить названия «чистая» и «прикладная» физика словами «декоративная» и «функциональная». Но это тоже плохо. Прикладная физика – либо физика, либо не физика. В первом случае в словосочетании «прикладная физика» следует отбросить прилагательное, во втором – существительное. Архитектура остаётся архитектурой независимо от того, создаёт она здание Организации Объединённых Наций или Сент-Шапель. Музыка есть музыка – в венском вальсе и в органном хорале, а живопись и в портретном жанре, и в пейзажном – всё живопись. И физика есть физика – объясняет ли она устройство телевизора или спектр гелия.
Однако различие в действительности должно быть всё-таки больше, чем я склонен был признать до сих пор, поскольку люди постоянно твердят о «фундаментальных исследованиях», предполагая, таким образом, существование чего-то противоположного, «нефундаментального». Хорошее определение «фундаментального исследования» все будут приветствовать. Попробуем изобрести его.
Начать следует, разумеется, с определения, что такое исследование. К несчастью, понятие это содержит в себе негативный элемент. Исследование – это поиски, когда вы не знаете, что найдёте; а если вы знаете, значит уже нашли, и вашу деятельность нельзя назвать исследовательской. Но если результат ваших исследовании неизвестен, откуда вы знаете, что он будет фундаментальным?
Чтобы выйти из этого тупика, попытаемся отнести понятие фундаментальности не к конечному результату исследований, а к самому процессу исследования. Мы можем, например, назвать фундаментальными такие исследования, которые ведутся независимо от того, будут ли результаты иметь практическое значение или не будут. Между прочим, здесь не следует перегибать палку. Было бы неблагоразумно определять фундаментальные исследования, как такие исследования, которые прекращаются, как только появляются признаки того, что результаты могут быть применены на практике. Такая концепция рискует навлечь на себя гнев финансирующих организаций. Но даже самого трудного и скаредного финансиста можно ублажить, сказав, что фундаментальные исследования – это те, которые не дают немедленного практического выхода, но наверняка дадут таковой рано или поздно.
Увы, и это определение не вполне удовлетворительно. Оно оставляет впечатление, что вы перед кем-то оправдываетесь, а это уже признак вины. Неужели нельзя определить фундаментальное исследование так, чтобы оно представляло ценность само по себе, без всякой связи с будущими практическими приложениями?
Назовём фундаментальными такие исследования, которые расширяют и продвигают теорию физических явлений. Следовательно, нам придётся немного по теоретизировать насчёт теории.
Существует несколько точек зрения на теорию. Одна из них состоит в том, что теория раскрывает нам глубинную простоту и стройность мироздания. Не теоретик видит лишь бессмысленное нагромождение явлений. Когда он становится теоретиком, явления укладываются в стройную и исполненную величия систему. Но, к сожалению, в последнее время благодаря квантовой механике и теории поля всё большее число людей, выбирая из двух зол меньшее, нагромождение явлений предпочитают нагромождению теорий.
Другую точку зрения высказал недавно Кондон. Он полагает, что теория должна дать нам возможность рассчитать результат эксперимента за более короткое время, чем понадобится для проведения самого эксперимента. Не соглашаться с Кондоном опасно, так как обычно он оказывается прав; но я не думаю, что это определение приятно теоретикам; они обрекаются, таким образом, на бесконечную игру в салочки, которую заведомо проиграют в таких, например, случаях, как при установлении сопротивления серебряного провода или длины волны некоторой линии в спектре германия.
Согласно другой точке зрения, теория должна служить для придумывания новых экспериментов. Здесь есть разумное начало, но это низводит теоретика до положения служанки экспериментатора, а эта роль ему вряд ли понравится.
Есть ещё одна точка зрения, что теория должна охлаждать горячие головы и не допускать потери времени на бесполезные эксперименты. Я предполагаю, что только изучение законов термодинамики пресекло некоторые попытки создать поистине невозможные тепловые двигатели.
Давайте польстим теории и дадим ей определение, которое не будет сводить её ни к хитроумному приспособлению для экономии времени, ни к прислуге эксперимента. Предлагаю считать, что теория – это интеллектуальный собор, воздвигнутый, если хотите, во славу божию и приносящий глубокое удовлетворение как архитектору, так и зрителю. Я не стану называть теорию отражением действительности. Слово «действительность» пугает меня, поскольку я подозреваю, что философы знают точно, что оно значит, а я не знаю и могу сказать что-нибудь такое, что их обидит. Но сказать, что теория – вещь красивая, я не постесняюсь, поскольку красота – дело вкуса, и тут я философов не боюсь. Разовьём нашу аналогии с собором.
Средневековые соборы никогда не бывали законченным строительством. Это же можно сказать и про физические теории. То деньги кончались, то архитектурная мода менялась. В последнем случае старая часть собора иногда разрушалась, а иногда к ней просто пристраивалась новая. Можно найти строгие и массивные римские хоры в мирном соседстве с парящей готической аркой, которая близка к границе опасной неустойчивости. Римские хоры – это классическая физика, а готическая арка – квантовая механика. Я напомню вам, что арка собора в Бовэ обрушивалась дважды (или даже трижды), прежде чем архитекторы пересмотрели свои планы и построили нечто, способное не упасть. Собор состоит обычно из нескольких часовен. Часовня физики твёрдого тела имеет лишь самое отдалённое отношение к часовне теории относительности, а часовня акустики вообще никак не связана с часовней физики элементарных частиц. Люди, молящиеся в одной из часовен вполне могут обходиться без остальной части собора; их часовня может устоять, даже если всё остальное здание рухнет. Сам собор может казаться величественным даже тем, кто не верит в бога, да и тем, кто построил бы совсем другое здание, будь он в состоянии начать всё сначала.
Остаток своей речи я хочу посвятить совсем другому вопросу. Мы восхищаемся нашим величественным собором. Как заразить молодёжь этим восхищением? Как заманить в физику будущих ферми, кондонов, слэтеров?
Обычный в этих случаях метод – удивить, потрясти. Беда в том, что человека нельзя удивить, если он не знаком с той ситуацией, в которую ваш сюрприз вносит решающие изменения. Не так давно я прочёл, что некто проплыл 100 ярдов за 49 секунд. Это совершенно меня не удивило, потому что я не знал, чему равнялся старый рекорд – 39, 59 или 99 секундам. Но я читал дальше и обнаружил, что старый рекорд составлял 51 секунду и держался в течение нескольких лет. Первое сообщение теперь пробудило во мне слабый интерес – едва отличный от нуля, но по-прежнему никакого удивления! Теперь представьте себе физика, меня, например, который пытается удивить аудиторию, состоящую из дилетантов, сообщением о том, что сейчас вместо двух элементарных частиц мы знаем целую дюжину или что олово совсем не оказывает сопротивления электрическому току при температурах ниже некоторой, а новейший циклотрон разгоняет протоны до энергии 500 Мэв . Ну и что? Это просто не даёт эффекта!
И если я оснащу своё сообщение экстравагантными утверждениями, это произведёт не больше впечатления, чем размахивание руками и крики лектора перед глухонемой аудиторией.
Ошибочно также мнение, что аудиторию можно потрясти, продемонстрировав решение какой-нибудь загадки. Беда здесь в том, что никто не заинтересуется ответом на вопрос, которого он не задавал. Автор детективных рассказов всегда создаёт тайну, прежде чем её решать. Можно было бы последовать его примеру, но труп неизвестного человека, с которого обычно начинается детектив, – зрелище существенно более захватывающее, чем труп известной теории, с которого должен начать физик.
Другой способ: можно пообещать любому вступающему в наш собор, что там он найдёт удовлетворение своему стремлению к чему-то неизменному, постоянному, вечному и бессмертному. Это фундаментальное стремление, поскольку оно постоянно фигурирует в произведениях мистиков, поэтов, философов и учёных. Лукреций считал, что он удовлетворил это желание, сказав, что атомы вечны. Это была прекрасная идея, но, к несчастью, Лукреций понятия не имел о том, что такое атомы. Представлениям древних об атомах ближе всего соответствуют, по-видимому, наши элементарные частицы, но – какая неудача! – ни один из членов этого беспокойного и таинственного семейства не является бессмертным, пожалуй, за исключением протона, но и его бессмертие висит на волоске: как только где-нибудь поблизости появится антипротон, он в самоубийственном столкновении сразу же прикончит соседа. Наши предшественники столетиями пытались найти этот «вечный атом», и теперь, докопавшись до того, что они считали гранитной скалой, мы обнаружили, что по-прежнему стоим на зыбучем песке. Так будем ли мы продолжать говорить о величии и простоте нашей картины мира? Величие, пожалуй, но простота, которая была очевидна Ньютону и Лапласу, – простота ушла вдогонку за «вечным атомом» Лукреция. Её нет, она утонула в волнах квантовой механики. Я подозреваю, что в каждой отрасли физики можно показать новичку хорошую, поучительную и соблазнительную картину – только если не пытаться копать слишком глубоко . Напечатано в журнале «Physics Today», 4, № 11 (1951)
– • • • –
Без слов
Прошлое и будущее теории поля
в теоретической модели, основанной на экспериментальных наблюдениях, достоверных с точностью до одного стандартного отклонения.
Наблюдатель Обычно хорошо информированный
(обычно хорошо информированный)
Чтобы понять всё значение теории поля, необходимо рассмотреть этот предмет на соответствующем историческом фоне. К 1930 году физика объяснила все наблюдаемые величины. И с тех пор занималась величинами только ненаблюдаемыми, которые и являются предметом рассмотрения в теории поля В работе Престона [Reviews of Unclear Physics, 1, № 1, 3 (1957)] приводится следующее описание и классификация ненаблюдаемых величин: «Хорошо известно, что физические величины описываются матрицами, собственные векторы которых образуют гильбертово пространство. Но эти матрицы – лишь небольшой класс среди всевозможных математических объектов, и очевидно, что безработных операторов очень много. Чтобы хоть некоторые из них использовать, можно предположить, что они соответствуют ненаблюдаемым величинам. Однако эти ненаблюдаемые величины ещё так плохо изучены, что разработка соответствующей математической теории является преждевременной.
Ненаблюдаемые явления можно разбить на следующие категории, расположенные в порядке убывания научного интереса, который они представляют:
а) явления, ненаблюдаемые по определению (например, невидимый свет);
б) явления, ненаблюдаемые в принципе (например, абсолютная скорость);
в) явления. ненаблюдаемые в природе (например, потомство от стерильных кроликов);
г) явления, ненаблюдаемые в обществе воспитанных людей (например. несохранение чётности до 1956 года). Последний пример показывает, что ненаблюдаемость не является интегралом движения».
Эта классификация иллюстрируется рис. 1.
Рис. 1 Ненаблюдаемая величина
– Прим. ред.
.
К тому же времени относится открытие Клейна. Ему мы обязаны уравнением, которое пишется одинаково как в неподвижной, так и в движущейся системах координат, например уравнение получается одинаковым независимо от того, пишете ли вы его сидя или на бегу (давняя мечта теоретиков).
В конце 40-х годов теория получила мощный толчок благодаря открытию знаменитого Лэмбовского сдвига. Вместо формул теоретики-полевики начали рисовать картинки, причём часто делали это на обратной стороне старых конвертов, тем самым существенно снижая затраты на теоретические исследования. Стоимость же экспериментальных исследований в этот период существенно возросла, чему способствовали неутомимые экспериментаторы, которые, докапываясь до неслыханных глубин, извлекали оттуда на объяснение своим друзьям-теоретикам один лакомый кусочек за другим по средней цене 10^6 долларов за кусочек. Все, однако, были согласны, что результаты стоили этих затрат, тем более, что затраты были направлены на общее благо и покрывались, естественно, за счёт налогоплательщиков.
Таким образом, Физика неотвратимо вступила в сильное взаимодействие с Правительством. Возможно, этим объясняется тот факт, что в 50-е годы в деятельности правительства всё сильнее стали замечаться проявления принципа наименьшего действия.
И вот, наконец, прикрываясь Римановыми листами, теоретики пробили себе дорогу в нефизические области и обнаружили, что всё имеет свою мнимую часть. В последнее время крепнет подозрение, что и сам объект исследования – амплитуда рассеяния – величина чисто мнимая…
Все уверены в том, что теория поля откроет в физике новую героическую эпоху, но когда это случится – сейчас ещё не время предсказывать.
Будущее теории поля лежит в аналитическом продолжении всего, что только можно, в комплексную плоскость. В одной из ранних работ было предложено продолжить в комплексную область квантовое число «странность» с тем, чтобы научиться классифицировать те чисто мнимые частицы, об открытии которых постоянно сообщает «Нью-Йорк таймс».
Там же предлагалось продолжить аналитически «двухкомпонентную теорию», чтобы получить «двухкомпонентный эксперимент», имеющий две составляющие – «Правильную» и «Неправильную». Хорошая двухкомпонентная теория должна точно описывать обе компоненты эксперимента.
Дисперсионные соотношения и коэффициенты Рака тоже нужно исследовать с этой точки зрения. Вычисление значений этих (и других) коэффициентов для комплексных значений аргументов обещает вдумчивому исследователю много незабываемых часов у электронно-вычислительной машины.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24