А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 


Еще до памятного спора с Брюстером на конгрессе Британской ассоциации возник для Джеймса конкретный вопрос: из каких компонентов слагается белый цвет? Какие цвета можно получить смешением? Сколько нужно конкретно взять такого-то цвета и такого-то, чтобы получить такой-то? Для точного сложения цветов Максвелл использовал и уже давно применявшийся цветовой волчок, и «цветовой ящик» – довольно громоздкое устройство, состоявшее из линзы, призм, щелей, экранов, образцовых цветов – цветных листков (от Хея). И тот и другой приборы постоянно совершенствовались Джеймсом, и однажды, весьма точно складывая цвета, Джеймс пришел к выводу, что красный, зеленый и синий цвета с «весьма высоким приближением» дают любой другой цвет спектра, в том числе и белый. Цвета, как оказалось, поддаются строгому математическому осмыслению. Оказалось возможным заранее довольно точно предсказать биологическую реакцию человеческого глаза на любой цвет. Смешивая цвета, можно было расчетом показать, каким будет вновь создаваемый цвет.
Цветовой волчок и цветовой ящик оказались совсем не игрушками, а довольно точными физическими измерительными приборами. А метод Максвелла, основанный на численных законах получения данных из измерений в цветовом ящике и на волчке, стал с тех пор общеупотребительным. Цвета, оказалось, тоже можно было вычислять.
«Джеймс Клерк Максвелл – мисс Кей
Трин. Колл. 24 ноября 1854 г.
...Я много занимался «верчением» цветов и пришел к очень точным результатам, доказывающим, что все глаза обычных людей созданы одинаковыми, хотя одни – лучше, чем другие, и что некоторые люди видят два цвета вместо трех; но все, у кого это случается, согласуются в показаниях друг с другом... Белый цвет не может быть создан с помощью синего, красного и желтого; если вы смешаете синий и желтый, вы получите не зеленый, а розовый... Те, кто видит два цвета, различают только синий и желтый, а не красный и зеленый...»
Старый друг Джеймса – Форбс придерживался такой же точки зрения и вместе с ним искал всё новые доказательства того, что желтый и синий цвета не дают в сумме зеленого. Для доказательства Джеймс предложил использовать две скрученные шерстяные нитки – желтую и зеленую, а потом наблюдать их с большого расстояния, может быть, даже через телескоп при нарушенной его фокусировке.
Нужно сказать, что оптические исследования Максвелла того времени во многом напоминали и повторяли исследования других ученых, в частности Германа Гельмгольца. Хотя многие выводы, сделанные им, вошли в золотой фонд учения о цветах, оптические исследования были скорее данью времени, данью, которую неизбежно нужно было заплатить, чтобы быть на самом переднем крае, на самой линии огня, где видны уже вспышки неприятельских выстрелов и нужно идти вперед самому, не полагаясь ни на чью помощь.
Первая статья Максвелла по цвету имела многозначительное название «Теория цветов в связи с цветовой слепотой» и была даже, собственно, не статьей, а письмом. Максвелл отправил его доктору Вильсону (в обычае ученых того времени было обмениваться письмами, сообщая о своих взглядах и открытиях); а доктор Вильсон счел письмо Максвелла настолько интересным, что поместил его целиком в свою книгу, посвященную цветовой слепоте. Так что Джеймсу не пришлось даже заботиться о публикации своих мыслей.
Когда-то в Гленлейре Джеймс исследовал глаза трески и вола, разрезая их. Но этого было ему мало. Джеймсу хотелось бы проникнуть внутрь живого глаза. Но как самому придумать и сделать простой прибор, с помощью которого свет мог бы быть направлен через зрачок внутрь глаза и выхватить из темноты для изнывающего от любопытства Джеймса пребывающее в темноте глазное дно?
«Джеймс Клерк Максвелл – Вильяму Томсону
Дорогой Томсон!
...Я сконструировал глазное зеркало на принципе Гельмгольца, но с выпуклыми стеклами (рисунок)... Преимущество этого приспособления в том, что... глаз... получает весь свет, который возвращается через зрачок. Таким способом я видел изображение свечи темно-коричневого цвета в глазах многих людей и заметил некоторые кровеносные сосуды. В собачьем глазу я видел блестящие цвета внутренней оболочки со всем ее сетчатым узором. Это поистине прекрасный объект, причем совсем нетрудный для наблюдения. Собака, во всяком случае, как будто бы не имеет ничего против».

«Джеймс Клерк Максвелл – м-ру Джону Клерку Максвеллу
...Я усовершенствовал свой инструмент для обозрения внутренности глаза. У Вэйра есть маленькая зверюшка, похожая на старину Аски, которая сидит довольно спокойно и, кажется, любит, когда ее изучают, а я знаю некоторых людей с большими зрачками, которые не хотят позволить мне заглянуть внутрь...
В прошлую среду я ходил с Хортом и Эльпинстоном в Рэй-клуб, который заседал в комнатах Кингсли из Сиднея. Кингсли – колосс в фотографии и микроскопах, он показал нам фотографию инфузории, просто прекрасную, а также снимки живых растений и животных, сделанные с помощью... микроскопа...»
Джеймс обнаруживает вокруг себя десятки других «пропов», требующих решения:
– Почему лист бумаги, падая на пол, совершает колебательное движение?
– Как выглядел бы мир в конической проекции?
– Каким условиям должно удовлетворять лучшее средство для чистки одежды?
Но самым долговечным из его юношеских научных увлечений оказалось все-таки цветовое зрение.
МАКСВЕЛЛ – ЭЛЕКТРИЧЕСКИЙ БРАКОНЬЕР
И все же Джеймса безотчетно влекут к себе тайны более глубокие, вещи куда более неочевидные, чем смешение цветов и изобретение глазного зеркала нового типа. И именно электричество в силу его интригующей непонятности неизбежно, рано или поздно, должно было привлечь энергию его молодого ума. Еще в Гленлейре среди «мусора» молодого Максвелла были самодельные магниты, гальванические элементы, еще в Эдинбургском университете знал он о Фарадее, о его великих трудах. И нет поэтому ничего удивительного, что, отдохнув после трайпоса всего месяц, Джеймс пишет своему старому другу, молодому, но уже знаменитому будущему лорду Кельвину, а сейчас пока еще просто Вильяму Томсону, профессору университета в Глазго:
«Трин. Колл. 20 февраля 1854
Дорогой Томсон!
Сейчас, когда я перешел в нечестивое состояние бакалавра, я начал подумывать о чтении. Конечно, приятно провести время среди книг признанного достоинства, которые ты не читал, но должен был бы. Однако у нас есть сильная склонность к тому, чтобы возвратиться к физическим теориям, и некоторые из нас хотели бы напасть на электричество.
Представьте себе человека, имеющего популярные сведения о демонстрационных электрических экспериментах и небольшую антипатию к учебнику по электричеству Морфи – как должен он читать и работать, чтобы приобрести хотя бы небольшое понимание сущности предметов, которое могло бы пригодиться при дальнейшем чтении?
Если бы он захотел читать Ампера, Фарадея и других, как ему это сделать, и на какой стадии и в какой последовательности он мог бы читать Ваши статьи в кембриджском журнале?»
Томсон ответил ему доброжелательным длинным письмом, в котором обстоятельно разъяснил порядок чтения и вообще дал свое благословение на занятия Джеймса электрическими материями, на вторжение в то, что Джеймс называл «электрическими заповедниками» Томсона. Томсон в те времена был, несомненно, самым видным после Фарадея физиком Англии, а ему было всего тридцать лет.
«Трин. Колл. 13 ноября 1854
Дорогой Томсон!
...Я хотел бы направить Вам исповедь электрического новичка.
Я довольно легко воспринял фундаментальные принципы напряженного электричества. Мне сильно помогла здесь аналогия с передачей тепла, которая, как мне кажется, есть Ваше изобретение, поскольку я нигде больше не находил ее. Затем я попытался создать теорию притяжения токов, но, хотя я уже мог видеть, как можно определить этот эффект, я не был удовлетворен формой теории, которая имеет дело с элементарными токами и их взаимодействиями. Не вижу, как из этого можно создать какую-нибудь общую теорию. Читал в этом семестре исследования Ампера и искренне восхищался ими, хотя это была наглядная демонстрация [взаимодействий элементарных токов], которая должна была бы всех убедить (после того, как Ампер убедил самого себя), что все это соответствует его философским взглядам и что все происходит так, как должно было бы быть.
И все же у меня нет сомнения в том, что Ампер сам открыл эти законы, причем, возможно, и посредством метода, который он привел. Да, я как-то слышал, что Вы говорили о «магнитных линиях сил», которые Фарадей будто бы использовал с большой пользой, в то время как другие, кажется, предпочитают представление о непосредственном взаимодействии элементов токов. Сейчас я считаю, что... каждый ток создает магнитные линии и действует так, как это ему предписывается линиями...»
Знаменательное письмо! Намечен разрыв с методами Ампера, строящего свою теорию на непосредственном мгновенном взаимодействии элементов токов через пространство – на дальнодействии. Переход к фарадеевскому восприятию действия через посредство магнитных силовых линий, заполняющих пространство. Принятие «близкодействия» – действия одного тела на другое через посредство некоторой промежуточной среды было ярким подтверждением твердости философских воззрений Максвелла. Еще на давнишней эдинбургской лекции о судьбе двух ученых – Леверрье и Адамса, открывших «на кончике пера» новую планету – Нептун, Джеймс должен был бы получить импульс в сторону «дальнодействия» – ведь планеты были открыты на основании законов тяготения, имеющих четко выраженный в те времена акцент «дальнодействия». Эта теория получила в открытии Нептуна столь мощное подтверждение, что усомниться в ней мог лишь нестандартно мыслящий ум, ничего не принимающий на веру.
Теория Ампера была целиком пронизана дальнодействием. Элементы токов взаимодействовали между собой, как маленькие планетки. Закон Кулона для взаимодействия электрических зарядов поразительно напоминал по конструкции закон тяготения Ньютона. Формальное сходство законов, математических выражений для, казалось бы, разных явлений – гравитационного и электрического взаимодействия – убедило Ампера в том, что основой любой общей теории электромагнетизма должно быть хорошо зарекомендовавшее себя дальнодействие. И ничто его не могло сбить с этого пути. Он выводил формулу за формулой, элементы взаимодействия с элементами, выражения все более и более усложнялись, формализовались, и Ампер, искуснейший математик, все с большим трудом выпутывался из дебрей сложнейших формул, не смущаясь иной раз и перед очевидными физическими несообразностями. Все амперовские токи были, например, замкнутыми, а взаимодействие токов определялось для изолированных, незамкнутых элементов...
Джеймс Клерк Максвелл в поисках теории, более соответствующей его философским взглядам, обращается к еще неясным для него силовым линиям Фарадея.
Фарадей, не получивший образования, не знавший математики, мог лишь любоваться совершенно непонятными ему математическими символами в трудах великих французов и немцев. Однако Фарадей противопоставил математическому камуфляжу здравый смысл реалиста. Он не понимал, как что-то может воздействовать на что-то через ничто, как бы красиво это ни было математически оформлено на бумаге.
Что значит – магниты воздействуют друг на друга на расстоянии? Но почему же вокруг полюсов магнита налипают опилки, почему опилки, если их посыпать на бумагу и поднести к магниту, собираются в стройные лохматые цепочки? Значит, есть что-то в пространстве, значит, наполнено чем-то это ничто?
И все-таки этому опыту, опыту с опилками, сторонники дальнодействия могли дать альтернативное объяснение. Такое: линии, по которым располагаются опилки, – лишь направления равнодействующей магнитных сил. Лишь направления! Но вот другому опыту сторонники дальнодействия дать объяснение могли лишь с трудом. Установка проста: две проводящие пластины, между которыми можно помещать разные непроводящие жидкости. Если подводить к пластинам напряжение от одной и той же батареи, система в каждом случае будет вести себя по-разному, например, скорость зарядки этого конденсатора будет в каждом случае своей, и его емкость будет в каждом случае разной. Значит, промежуточная среда играет роль в электрических взаимодействиях?
И вот здесь-то, когда заходила речь о промежуточной среде, язык сторонников дальнодействия сразу начинал заплетаться, он становился все туманней и запутанней, что уже само по себе являлось признаком непонимания и замешательства.
Все возрастающая сложность математических теорий электричества, создаваемых сторонниками дальнодействия, явно заводила в тупик. Для того чтобы свести концы с концами в опыте с зарядкой конденсатора, приходилось вводить в формулы поправочный коэффициент – диэлектрическую постоянную: объяснить же физический смысл этого коэффициента сторонники дальнодействия оказались не в состоянии. Факты упрямо выпирали из теории, ломали, разрушали ее, взрывали изнутри вавилонскую башню Амперовой электродинамики. Но снаружи пока еще этого видно не было.
И лишь одно могло бы окончательно примирить факты с теорией – принятие совершенно новой модели явлений, новой физической философии, философии, с одной стороны, естественной и в силу этого неправдоподобно простой, а с другой – сложнейшей, поскольку таила она в себе тысячи новых сложностей. Но пока выручала.
Лишь один Фарадей придерживался в науке этой новой философии и тем навлекал на себя насмешки и презрение. Его грубые материальные силовые линии, ранее, возможно, использовавшиеся им скорее для наглядности, теперь уже пронизывали для него тела и пространство и обладали обыденными физическими качествами, например сжимались и растягивались. Никто не понимал его и не поддерживал. Его идеи казались слишком абстрактными.
Но на стороне Фарадея был его реализм, склонность проверять всех и вся – «люди склонны ошибаться», способность воспринимать лишь то, что может быть проверено опытом. Признание за телами присущего им изначального свойства притягиваться к другим через ничто, просто на расстоянии, свойство, подобное длине или ширине, было глубоко чуждым и невозможным для него. Гигантская фигура Фарадея предстает на поле брани в полном одиночестве, противостоя объединенной блестящей гвардии немцев и французов – сторонников отнюдь не ближнего боя, сторонников дальнодействия.
...Он был совсем одинок, если бы не Томсон, а потом Максвелл.
Максвелл, как Фарадей, сердцем не мог принять идею взаимодействия на расстоянии. Этому противоречил и склад его ума, стремящегося объяснить все, не знающего никаких «священных земель», все его воспитание, все его юношеские физические и химические эксперименты. Не зря стоял на дворе век пара, век машин и механизмов, сложных, но вполне доступных для объяснения и понимания. Не зря Джеймс исследовал когда-то, как звонят колокольчики в его родном доме в Гленлейре. Не только удобное средство для связи с домашними видел он в этом нехитром устройстве. Он вникал в суть вещей, видел их скрытый смысл и значение.
«...Когда мы наблюдаем, что одно тело действует на другое на расстоянии, то, прежде чем принять, что это действие прямое и непосредственное, мы обыкновенно исследуем, нет ли между телами какой-либо материальной связи; и если находим, что тела соединены нитями, стержнями или каким-либо механизмом, способным дать нам отчет в наблюдаемых действиях одного тела на другое, мы предпочитаем скорее объяснить действия при помощи этих промежуточных звеньев, нежели допустить понятие о прямом действии на расстоянии.
Так, когда мы, дергая за проволоку, заставляем звонить колокольчик, то последовательные части проволоки сначала натягиваются, а затем приходят в движение, пока наконец звонок не зазвонит на расстоянии посредством процесса, в котором принимали участие все промежуточные частицы проволоки одна за другой. Мы можем заставить колокольчик звонить на расстоянии и иначе: например, нагнетая воздух в длинную трубку, на другом конце которой находится цилиндр с поршнем, движение которого передается звонку. Мы можем также пользоваться проволокой, но, вместо того чтобы дергать ее, можем соединить ее на одном конце с электрической батареей, а на другом конце – с электромагнитом, и таким образом заставим колокольчик звонить посредством электричества.
Здесь мы указали три различных способа приводить звонок в движение. Но во всех этих способах есть то общее, что между звонящим лицом и звонком находится непрерывная соединительная линия и что в каждой точке этой линии совершается некоторый физический процесс, посредством которого действие передается с одного конца линии на другой.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38