А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 



Музыкальная струна, растягиваясь под нагрузкой и накапливая энергию, может удлиниться почти на 2 %
Конечно, музыкальная струна – это уникальный дорогой материал. Для обычных стальных пружинных материалов плотность энергии снизится более чем вдвое. Учитывая неравномерность напряжения пружинного материала, а также делая поправку на необходимый запас прочности, я подсчитал, что каждый килограмм пружины способен накопить не более 0,5 кДж энергии. Значит, автомобилю массой в 1 т для прохождения 100 км пути потребуется пружинный аккумулятор массой 50 т!

Пружинный накопитель для легкового автомобиля будет весить около 50 т
А как же все-таки передвигались старинные королевские пружинные экипажи, один из которых можно видеть на гравюре великого немецкого художника Альбрехта Дюрера? Позже в одной из книг я прочитал, что их постоянно «подзаводили» сильные работники, хорошо замаскированные среди золоченого великолепия экипажей. Иначе бы не пройти им и десятка метров. Вот и весь секрет!

Пружинный «королевский» экипаж Альбрехта Дюрера
Хочу оговориться, что существуют материалы, в основном из сплавов никеля и титана, которые способны удлиняться под нагрузкой раз в 10 больше, чем стальная проволока. Эти так называемые «псевдоупругие» материалы могли бы накопить энергии в несколько раз больше, чем стальные пружины, если бы не одно «но». Свойство приобретать такие удлинения приходит к данным материалам при температурах, больших, чем в самых жарких саунах и даже римских «термах». Может быть, и «научат» такие материалы работать при комнатных температурах, но когда это будет – неизвестно.
Итак, пружины тоже пришлось пока вычеркнуть. Претендентов на «капсулу» оставалось все меньше и меньше.
Резина побеждает сталь
Жаль было расставаться с пружинами, но моих надежд они явно не оправдали. Я должен был это предвидеть: из пружины даже рогатки толковой не изготовишь. Когда-то я пытался заменить резиновые жгуты в рогатке на тонкие пружины, намереваясь смастерить «суперрогатку», но получился конфуз. Под смех товарищей «суперрогатка» выплюнула мне камень под ноги. Выходит, не так уж плоха резина и для рогаток, и для резиномоторов. И ведь используется здесь именно свойство резины накапливать энергию.
На первый взгляд кажется: ну что за материал резина по сравнению с прочнейшей проволокой? Но это только на первый взгляд. Проверим все в цифрах. Чтобы вытянуть резиновый жгут сечением в 1 см2вдвое, нужно приложить силу около 200 Н. Я вычислил это, подвешивая к жгуту различные грузы. А до разрыва хорошая резина из натурального каучука растянется раза в четыре, не меньше.

График «растяжения-сокращения» резины(заштрихованные зоны характеризуют потери энергии)
Экспериментируя с резиновыми жгутами, я заметил, что при растяжении жгута требуется больше силы, чем при его сокращении до той же длины. Я построил графики растяжения и сокращения этих жгутов и заметил, что далеко не вся энергия, затраченная на растяжение, возвращается при сокращении, особенно если растягивать жгут сильно.
Пропадает, а правильнее, переходит в тепло до 30 % накопленной энергии; стало быть, КПД резиноаккумулятора невелик!
Метровый резиновый жгут сечением в 1 см2имеет массу чуть больше 100 г, а накапливает при полном растяжении около 3 кДж энергии. Выходит, у резины как аккумулятора плотность энергии почти в 100 раз больше, чем у пружин, и достигает 30 кДж/кг! Вот, оказывается, почему модели с резиномоторами летают, в то время как ни одна модель с пружинным мотором еще не взлетела. Этим объясняется и мой конфуз с пружинной «суперрогаткой».
Какова же будет масса резинового аккумулятора, пригодного для автомобиля? Необходимые 25 МДж энергии наберут всего около 900 кг резины. Это уже не 50 тонн! Над таким аккумулятором стоит поработать.
Основная трудность, с которой пришлось столкнуться, – это как преобразовать натяжение резины во вращательное движение вала. Ведь в конечном счете накопленная энергия должна вращать вал. Если вращения не нужно, то все гораздо проще. Вот в подводном ружье или в той же рогатке резина тоже аккумулирует энергию. Но все обходится ее растяжением, и это очень облегчает задачу. В резиномоторах для моделей жгут из тонких резиновых нитей скручивают. Кто изготовлял такие резиномоторы, тот знает, как перекручивается жгут при заводке мотора, как трутся петли резины друг о друга. Их даже смазывают касторкой, чтобы уменьшить трение. В результате – много потерь энергии, быстрый износ. По сравнению с моделями для настоящих машин, работа которых определяется КПД и долговечностью, это совершенно неприемлемо.
Итак, резину нужно только растягивать. Первой мыслью, конечно, было привязать к концу резинового жгута веревку и намотать ее на вал, который должен вращаться.
Я так и сделал. Превратить «безменовоз» в «резиновоз» было делом получаса. Под днищем тележки я закрепил конец резинового жгута, ко второму концу привязал шнурок, а шнурок намотал на ось колеса – и нехитрый привод был готов. Стоило прокрутить колеса тележки в обратную сторону, и энергия растянутой резины начинала катить «резиновоз», как только я опускал его на пол. Я убедился, что как транспортная машина он гораздо лучше «безменовоза»: и проходит большее расстояние, и движется более плавно.
Но для реальной машины это не подходит. Если даже изготовить толстенный резиновый жгут сечением в 1 дм2, то для накопления нужной энергии он должен иметь длину не менее 100 м! Растянется же этот жгут почти на целый километр. Такой жгут не то что на автомобиль, на поезд не поместится.
Если перекидывать жгут через блоки, как трос в подъемных кранах, то, хоть мы и сократим его длину, почти всю накопленную энергию «съедят» потери в блоках. Ведь резина – не стальной трос, она сильно растягивается, и при огибании блока жгут будет так тереться об его поверхность, что потери энергии, как и износ резины, неминуемы.
И еще. Сам по себе жгут сечением в 1 дм2, растягиваясь, может развивать силу в несколько тонн. Перекинув жгут через блоки, мы как бы складываем его раз в 100 (чтобы сократить километровую длину хотя бы до пригодных для автомобиля десяти метров), при этом усилие растяжения достигает сотен тонн. Этакая сила запросто «сложит» автомобиль, совсем как трубу телескопа. Подобные аварии машин так и называются – «телескопированием».
Да, неразрешимая проблема. Всем хороша резина, но слишком уж неудобна в обращении…
И тут совершенно неожиданно мне пришла удачная мысль: если навить резиновый жгут на очень скользкий цилиндр (представим, что мы имеем такой идеально скользкий цилиндр), как на катушку, по спирали, то можно сильно сократить длину жгута. К тому же все усилие растяжения резины «перейдет» во вращение вала, не понадобится никаких дополнительных механизмов, и нечего бояться, что автомобилю грозит «телескопирование». Допустим, диаметр цилиндра будет всего полметра, тогда на каждый метр его длины ляжет не менее 30 слоев жгута, который еще сильно сузится при растяжении. Это уже составит около 50 м растянутой резины. Километровый жгут уляжется на 20 м цилиндра, сделав при этом 600 оборотов.

Тележка-«резиновоз» движется на накопленной в резине энергии
Лучше нельзя и придумать, но пока нет гипотетического идеально скользкого цилиндра. А, собственно говоря, для чего он нужен? Для того, чтобы каждый последующий слой резины на цилиндре мог провернуться относительно предыдущего без трения… Стоп! Ведь такой же результат мы получим, если разрежем цилиндр, как колбасу, на отдельные слои и насадим их свободно на общую ось! Слои эти можно изготовить из легкой пластмассы, даже из дерева.
Я приглядел дома толстую добротную скалку, которой бабушка раскатывала тесто, и, воспользовавшись удобным случаем, распилил ее на множество тонких дисков. Выкрасил их сразу же раствором марганцовки, чтобы не узнали в моем «изобретении» бывшей скалки. Затем, проделав центральные отверстия, посадил диски на гладкий стальной стержень, на котором они могли бы свободно вращаться. Кроме того, я просверлил диски в разных местах, чтобы максимально облегчить конструкцию. В самые крайние диски аккуратно, стараясь не расколоть, вбил короткие толстые гвозди, перекинул через них зигзагами резиновый жгут, концы которого связал между собой. Чтобы диски не терлись торцами, проложил между ними шайбы.
Теперь, вращая крайние диски в разные стороны, я мог растягивать резиновый жгут, накапливая в нем изрядное количество энергии.
Установил я свой «резиноаккумулятор» на оси колеса детской коляски. Крайние диски закрепил неподвижно – один на оси колеса, другой на раме коляски. Закрутив колесо в обратную движению сторону до полного натяжения резины, оборотов на 50, я затем опустил его на землю. Коляска рванулась вперед, как норовистый конь, и резво вынесла меня прямо на середину двора на зависть младшим ребятишкам.

Мой резиноаккумулятор
Потом я соединил вместе десять таких «резиноаккумуляторов», расположив их под днищем коляски, с приводом на одно заднее колесо. Второе посадил на ось свободно. Передние колеса я сделал рулевыми и проехал на своем «резиновозе» уже метров 300, вызвав удивление у прохожих. Еще бы! Детская коляска с длинноногим «малюткой» сама собой катилась по улице, причем довольно быстро и бесшумно, словно печка с Емелей из сказки!
Моим «резиноаккумулятором» заинтересовались специалисты, тоже из числа прохожих. Один из них, работавший на заводе, посоветовал мне подать заявку в Комитет по изобретениям, описав устройство «резиноаккумулятора». Он и помог составить заявку, так как это оказалось непросто, особенно если делаешь это в первый раз.
Какова же была моя радость, когда я получил официальное письмо, где говорилось, что мой «резиноаккумулятор» признан изобретением. А затем, почти через год, мне торжественно вручили государственный документ – авторское свидетельство на изобретение. Это был красивый диплом с красной печатью и зеленой лентой, с номером моего изобретения и чертежом «резиноаккумулятора». Тот, кто получает такое авторское свидетельство, уже считается изобретателем. Я очень гордился этим документом и повесил его на стенку.
Надо сказать, что «резиноаккумулятор» действительно вышел неплохой. Правда, он запасал не 30, как я ожидал, а всего 3 кДж/кг, но и это было в десятки раз больше, чем может накопить пружина.
Кстати, резина накапливает больше всего энергии и выделяет ее при максимальном КПД не при комнатной температуре, а при той, которая бывает в жаркой русской бане – при 80—90 °С! Поэтому-то автомобильные резиновые шины прочнее и экономичнее именно при данной температуре, которую они сами и принимают во время длительной езды с полной нагрузкой.
Конечно, я понимал, что это не совсем тот аккумулятор, о котором мечталось. И энергии не мешало бы побольше, и потерь ее в резине многовато. Да и материал – резина – недолговечный по сравнению, например, с металлом. Что ж, значит, все еще впереди.
Энергия… в воздухе!
«Бесполезно было ждать от резины энергии больше, чем она в состоянии накопить», – успокаивал я себя, глядя на предмет моей гордости – авторское свидетельство на изобретение «резиноаккумулятора». Мне удавалось растягивать жгут лишь до известных пределов, в конце концов резина не выдерживала и лопалась. При этом вся накопленная энергия «вылетала» из нее, как пробка из бутылки шампанского.
А кстати, почему вылетает пробка из бутылки с шампанским? Потому же, почему и пуля из пневматического ружья. Сжатый газ способен совершать работу благодаря накопленной в нем энергии. Той самой потенциальной энергии, что запасалась в устройствах, которые я мастерил раньше. Воздух, как и любой газ, обладает упругостью. Более того, воздух, например, можно сжимать гораздо сильнее, в большее число раз, чем растягивать пружину или резину. Хорошо, если пружину удается растянуть вдвое; резину иногда растягивают раз в пять-шесть. А воздух сжимай хоть в 500 раз – ничего ему не сделается. То есть в сжатом воздухе, если рассуждать теоретически, можно накопить огромную энергию. Но газ не поддается сжатию сам по себе, нужен сосуд – баллон, в котором этот газ находился бы. Баллон должен быть очень прочным, иначе его разорвет давление.
А прочные вещи всегда тяжелые, поэтому сам баллон, как правило, намного тяжелее, чем газ внутри него. Правда, и газ, сжатый, например, в 500 раз, нелегок – по плотности он уже приближается к жидкости…
Но все-таки, сколько энергии сумеет накопить сжатый воздух? Может ли он претендовать на звание «энергетической капсулы»? Я, наверное, первый раз в жизни листал свой школьный учебник по физике с таким нетерпением, прежде чем нашел то, что искал.

Сжатый газ в баллоне выделяет энергию, вращая пневмодвигатель
Чтобы узнать, сколько энергии накоплено в газе, нужно умножить его давление на объем. Кубометр воздуха весит чуть больше килограмма. Допустим, мы сожмем воздух в 500 раз, его давление будет – 500 атм, или около 50 МПа (мегапаскалей). Тогда весь кубометр воздуха уместится в сосуде емкостью 2 литра. Если предположить, что баллон весит примерно столько же, сколько и воздух (а это должен быть очень хороший крепкий баллон!), значит, на каждый килограмм баллона придется только около литра сжатого воздуха. Но этот литр, или одна тысячная кубометра, умноженный на 50 МПа, даст в результате 50 кДж энергии!
Совсем неплохой показатель – 50 кДж/кг! Плотность энергии почти вдвое выше, чем у лучшей резины. И долговечность такого аккумулятора очень высока – воздух не резина, он не изнашивается. Масса воздушного аккумулятора для автомобиля будет всего 500 кг. Его уже вполне можно установить на автомобиле в качестве двигателя.
Окрыленный этим открытием, я поспешил поделиться радостью со своим приятелем. Но тот в ответ лишь ухмыльнулся и сунул мне под нос только что полученный журнал, где говорилось, что не так давно итальянцы построили автомобиль-воздуховоз, способный с одной заправки воздухом пройти более 100 км.

Автомобиль-пневмокар, работающий на потенциальной энергии сжатого в баллонах газа
Вскоре выяснилось, что и это далеко не новость. Еще в позапрошлом веке во французском городе Нанте ходил трамвай, работавший от баллонов со сжатым воздухом. Десяти баллонов воздуха, сжатого всего до 3 МПа, при общем объеме 2800 л, трамваю хватало, чтобы проходить на накопленной в воздухе энергии путь в 10—12 км.
В США уже в начале прошлого века был изготовлен автомобиль-пневмокар, работавший на энергии сжатого воздуха.
Все равно я решил построить модель такого воздуховоза, чтобы самому убедиться в преимуществах и недостатках воздушного аккумулятора. Как мне представлялось, модель автомобиля-воздуховоза сделать несложно. По моим расчетам, для этого нужен был углекислотный огнетушитель, например автомобильный, который выбрасывает струю газа, а не пены, и тяговый пневмодвигатель, скажем, от воздушной дрели или гайковерта.
Но, увы, первое же испытание воздуховоза разочаровало меня. Я направил сжатый углекислый газ из огнетушителя в пневмодвигатель, а тот, чуть-чуть поработав… замерз. Да-да, покрылся инеем и остановился!
Объяснение этому поразительному явлению я нашел в том же учебнике физики.
В принципе любой сжатый газ при резком расширении сильно охлаждается. Когда я, ничего не подозревая, крутанул вентиль баллона сразу до отказа, и газ под большим давлением вырвался из отверстия, расширение оказалось столь интенсивным, что газ стал превращаться в снег. Не обычный, а углекислотный, с очень низкой температурой. Такой снег, только спрессованный, часто называют «сухим льдом», потому что он переходит в газ, минуя жидкую фазу. Мне не раз приходилось видеть «сухой лед», когда я покупал мороженое. Но главное – охлаждение значительно снизило запас энергии в сжатом газе. Ведь давление газа при охлаждении стремительно падает, а значит, уменьшается и количество выделяемой энергии. Это и послужило основной причиной остановки пневмодвигателя.
Можно, конечно, нагреть охлажденный газ, чтобы вернуть ему прежнюю температуру. Но ведь нагрев – затрата энергии. Газ когда-то сжимали, закачивая в баллон. Тут-то он и нагревался: газы, как известно, при сжатии нагреваются. Вот если бы горячий газ сразу же был пущен в работу, тогда бы он охладился до исходной температуры. А при хранении баллон с горячим газом в конце концов остывает, принимает температуру окружающего воздуха. Отсюда, за счет расширения, и столь сильное охлаждение газа при выходе его из баллона, отсюда и «сухой лед».
Как ни горько мне было читать об этом в учебнике, но это было правдой, подтвержденной моим собственным опытом по «замораживанию» пневмодвигателя. Вроде бы и учился я неплохо, по физике имел только «отлично», однако почему-то начисто забыл о тех явлениях, которые на уроках в школе казались мне такими простыми и понятными.

Это ознакомительный отрывок книги. Данная книга защищена авторским правом. Для получения полной версии книги обратитесь к нашему партнеру - распространителю легального контента "ЛитРес":
Полная версия книги 'Удивительная механика'



1 2 3 4