А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Даже при такой грубой процедуре большинство из них сохраняется.Теперь нервные клетки нужно было отделить от глиальных и обрывков волокон. Для этого мозговую кашицу протирают через тончайшие сита, смешивают с какой-нибудь плотной жидкостью вроде глицерина и пробирку помещают в центрифугу. Подбирая соответствующим образом плотность растворителя и скорость вращения, удается добиться, чтобы в осадок выпали тела нервных клеток, почти без примеси других фрагментов мозга, или синапсы, то есть концевые бляшки нервного волокна с кусочком клеточной мембраны, к которой они прикреплены. Интересно, что даже в тщательно разрушенном мозгу не удается найти синаптических бляшек, отделенных от мембраны, к которой им полагается быть прикрепленными. Синапс оказался удивительно прочной структурой, что очень помогло в его изучении. Вырванные из мозга, они еще несколько часов остаются живыми и сохраняют работоспособность.Мозг только кажется совершенно неприступным. Три далеко не замысловатых изобретения — создание красителя, производство микропипеток, умение тщательно растереть мозг в ступке, а затем отцентрифугировать полученную кашицу — создали условия для бурного развития морфологии, физиологии и биохимии мозга. Правда, этому предшествовало появление микроскопа, точных электроизмерительных приборов, высокоскоростных центрифуг и аппаратуры, позволяющей осуществлять точнейший биохимический анализ. Но все эти приборы, казавшиеся в момент их создания чудом совершенства, предназначались не только для изучения мозга. История трех изобретений показывает, как трудно дается изучение мозга и как новое орудие исследователей помогает добиваться победы, вырывать у мозга его очередные тайны. Думающая «тара» Как ни странно, мода играет в человеческой жизни заметную роль. В наши дни ей посвящают большие исследования и пишут на эту тему диссертации. Несколько лет назад в Англии группа исследователей провела серьезное изучение, посвященное отношению общества к вещам. Их выводы сводились к следующему: за пять лет до вхождения в моду новых моделей эта одежда «аморальна», за три года становится «кричащей», а за год — всего лишь «смелой». Разумеется, она прекрасна, когда в моде. Но год спустя — безвкусна, через пять лет — ужасна, через двадцать — комична, а через тридцать… оригинальна.Народная мудрость не разделяет такого отношения к одежде. На этот счет существует множество пословиц и поговорок. Говорят, что по одежде встречают, а провожают по уму, что не одежда красит человека, а человек одежду. Об «одежде» нервных клеток, об их оболочках такого никак не скажешь. Безусловно, ни оболочка нейрона отдельно от его содержимого, ни содержимое нервной клетки отдельно от ее оболочки существовать не могут. И то и другое одинаково необходимо, но для нас важнее оболочка, мембрана, покрывающая нейрон, так как мы думаем, воспринимаем, творим с помощью оболочек. Это их прямая и к тому же важнейшая обязанность.Работа мозга заключается в передаче, распределении, переадресовке потоков информации по нейронным цепям, в обработке собранной информации и формировании на этой основе команд исполнительным органам. Эти обязанности возложены на наружные оболочки. Как мы уже знаем, они у нейрона удивительно прочны, выдерживают тщательное растирание в ступке, между тем как у большинства других клеток организма их толщина ничтожна, всего 5 микрометров. Мембрана нейронов состоит из двух слоев молекул жироподобных веществ — липидов, выстраивающихся таким образом, что их легко смачиваемые водой концы образуют наружную и внутреннюю поверхность мембраны, а те концы молекул липидов, которые смачиваются ею хуже, оказываются спрятанными в толще клеточной оболочки.Живые организмы умеют отлично сочетать типовые и индивидуальные формы строительства. Клеточные мембраны монтируются из стандартных блоков — молекул липидов. Индивидуальность, неповторимость им придают молекулы специфических белков, встроенные в липидную стенку или использованные для «отделки» наружного фасада нейрона. Белковые включения являются специальным оборудованием клеточной оболочки, ее рабочими элементами. Они несомненно самые важные части оболочки мембраны, так как именно на них возложено выполнение всех ее специфических обязанностей.У липидной основы клеточной оболочки задача проще. Она должна обеспечить постоянство внутриклеточной среды. Однако неверно думать, что оболочка представляет собой действительно надежную преграду. По существу мембрана — это особая жидкость, тончайшим слоем обволакивающая жидкое внутриклеточное содержимое, а белковые включения «плавают» на ее поверхности или, как подводные лодки, находятся в «погруженном» состоянии. И тем не менее «жидкая» оболочка обладает достаточным запасом прочности. Когда в нее упирается микроэлектрод, она, прежде чем расступиться, выгибается под его воздействием, оказывая существенное сопротивление.Как ни плотно упакованы в мозгу нервные и глиальные клетки, между ними всегда находится межтканевая жидкость. Ее состав серьезно отличается от того, что находится внутри нейрона. В протоплазме нервной клетки в десять раз меньше натрия, чем во внеклеточной жидкости, и примерно в десять раз больше калия. Для клетки чрезвычайно важно, чтобы ее внутриклеточная среда не менялась, а между тем ее тонкая оболочка не может быть непреодолимым препятствием для ионов натрия и калия. Они просачиваются в поры между молекулами липидов, благодаря чему клеточная среда беспрерывно обогащается натрием и не менее интенсивно теряет калий.Хотя нейронная мембрана дырява, это не снимает с нее ответственности за поддержание постоянства внутриклеточной среды, в том числе и в отношении ионов калия и натрия. Не имея возможности стать для них серьезным препятствием, клеточная оболочка нейрона обзавелась натриево-калиевыми насосами, которые выкачивают из клетки излишки проникших туда ионов натрия и пополняют убыль в ионах калия.Натриевый и калиевый насосы представляют собой крупные белковые молекулы, но могут быть смонтированы из нескольких более мелких белковых молекул. Даже совсем небольшой нейрон имеет около миллиона натриево-калиевых насосов, способных перекачивать за одну секунду до 200 миллионов ионов натрия и 130 миллионов ионов калия каждый. Не всегда работа насосов протекает столько энергично, но все же им приходится совершать постоянную напряженную работу, чтобы как-то скомпенсировать ненадежность самой мембраны.Кроме насосов в стенке нейрона существуют каналы для пропуска ионов натрия, калия и кальция. Они также построены из белковых молекул. Каналы устроены так, что они могут открываться и закрываться. Как это происходит, пока выяснить не удалось, но особенно удивляться здесь нечему. Белковые молекулы способны менять свою конфигурацию, например, сжиматься. На этом, кстати, основана работа мышц.Каналы устроены так, что преимущественно пропускают ионы какого-то одного типа, например натрия или калия. Свойство поистине удивительное, если иметь в виду, что калиевый канал, свободно пропускающий ионы калия, на каждые сто его ионов позволяет просочиться лишь семи значительно более мелким ионам натрия. Видимо, они устроены так, что к их стенкам «прилипают» ионы любых веществ, не предназначенных для прохождения по данному каналу.«Двери» каналов снабжены надежными запорами. Как устроены эти замки, пока недостаточно ясно, но ключи к ним известны. Одни из них отпираются и запираются электрическим ключом, для других ключом служат молекулы особых веществ — медиаторов. Рассказ о химических ключах еще впереди. Сейчас нам важно знать лишь о том, что происходит с нейроном, когда широко открываются каналы в его оболочке.Благодаря тому что внутри нейрона иная концентрация ионов натрия и калия, чем снаружи, а каждый ион несет положительный или отрицательный заряд, внутренняя среда нервной клетки оказывается на 70 милливольт заряжена более отрицательно, чем ее поверхность. Отрицательный заряд, называемый потенциалом покоя, сохраняется до тех пор, пока нервная клетка бездействует.Но вот нервный импульс одного нейрона добежал по его аксону до дендритов или даже до поверхности тела другого, находящегося в состоянии покоя. Химический ключ открывает в его оболочке натриевые каналы, и натрий бурными многочисленными потоками устремляется внутрь клетки. Благодаря проникновению в нейрон огромного количества положительно заряженных ионов натрия отрицательный внутриклеточный потенциал сменяется на положительный.Натриевые каналы работают одно мгновение и тотчас закрываются, а им на смену открываются калиевые каналы, и теперь калий начинает бурно покидать нейрон. Ионы калия тоже заряжены положительно. Покидая нейрон, они уменьшают его заряд, и тот снова становится отрицательным, достигая обычной величины минус 70 милливольт.Хотя в том месте клеточной мембраны, где только что были открыты натриевые и калиевые каналы, все очень скоро приходит в норму, дело этим не ограничивается. Снижение и изменение знака внутриклеточного потенциала является ключом, отпирающим и запирающим ионные каналы на соседних участках клеточной мембраны. Если в основании главного нервного отростка — аксона внутриклеточный заряд уменьшается, тотчас в непосредственной близости от этого места распахиваются двери натриевых каналов, и там почти мгновенно начинает падать величина электрического потенциала, отпирая двери в соседнем участке нервного волокна. Так отпирая и запирая ионные каналы в оболочке нервного волокна, проносится по аксону волна изменения потенциала — нервный импульс, пока не добежит до синапсов. А там он может перескочить и на соседний нейрон, но об этом разговор будет особый.Интересно, что стремительный бег по нервному волокну биоэлектрического потенциала, когда ему ничто не мешает, совершается медленнее, чем скачки с препятствиями. Только у низших животных нервные волокна бывают «голыми». В мозгу человека большинство аксонов, кроме клеточной мембраны, имеют дополнительную электроизоляцию. Эту функцию выполняют большие плоские швановские клетки, создающие для него несколько слоев надежной изоляции, накрученные, как изоляционная лента, на нервное волокно.Муфты швановских клеток, надетые на аксон, не соприкасаются друг с другом. Между ними остаются узкие щели — перехваты Ранвье. Только здесь нервное волокно непосредственно соприкасается с внеклеточной жидкостью. Поэтому в нервной системе человека волна распространяющегося нервного импульса не бежит плавно, а движется скачками от одного перехвата к другому, что весьма ускоряет процесс распространения импульса.Таким образом, одежда нейрона — его оболочка не только обеспечивает целостность и самостоятельность нервной клетки. Она ответственна за возникновение в нем возбуждения, за распространение этого возбуждения по отросткам нейрона и, как мы увидим дальше, имеет прямое отношение к переходу возбуждения с одного нейрона на другой. Роль одежды нейрона столь велика, что изучению нейронных мембран сейчас посвящается больше исследований, чем любым другим структурам нервной клетки. Нейрон в «тисках» Нейрон-крохотуля скрыт в глубинах мозговой ткани. В живом мозгу его не увидишь, не найдешь. Как же удалось узнать о его деятельности такие подробности? Казалось бы, что для исследования нужно «вырубить» нервную клетку из толщи мозга, извлечь наружу, зажать для устойчивости в «тиски». Только теперь можно начать исследование: ввести в нее микроэлектрод или микропипетку и попробовать выяснить, что происходит у нее внутри, что проникает туда через стенку и что выделяется наружу. Фантастическая картина! Но как иначе приступить к изучению нейрона? За такую ювелирную работу не взялся бы даже знаменитый лесковский Левша. И действительно, еще недавно ученые ни о чем подобном и мечтать не смели. А почему бы и нет? — задали вопрос киевские ученые Института физиологии, из лаборатории академика П.Г. Костюка, — и приступили к исследованию.Первой задачей, вставшей на пути ученых, стала необходимость осуществить демонтаж мозга. Его нужно было разобрать на отдельные нейроны, но сделать более деликатно, чем это делали химики, чтобы сохранить нервные клетки живыми.За большой и сложный мозг млекопитающих киевляне не взялись. Для начала был выбран объект попроще — нервный ганглий улитки, вроде тех, что живут в каждом самом маленьком пруду. Выбор моллюсков в качестве объекта исследования был сделан по целому ряду причин. Главная заключалась в том, что многие нейроны нервной системы улиток имеют «гигантские» размеры. Они такие большие, что видны простым глазом, без микроскопа или увеличительного стекла. Кроме того, они лежат на поверхности нервного ганглия, и поэтому добраться до них совсем не трудно. А что до того, что вместо нейрона человеческого мозга для исследования взят нейрон весьма примитивного существа, так ученые уже имели возможность неоднократно убедиться, что работа нейронов высокоразвитых и низших животных не имеет существенных различий.Неожиданно оказалось, что разобрать нервный ганглий улитки на отдельные клетки совсем не трудно. Ганглий удалось растворить, воспользовавшись давнишним изобретением природы — пищеварительным ферментом пепсином, с помощью которого у нас в желудке перерабатывается мясная пища. Оказалось возможным подобрать такую концентрацию фермента, при которой в мозгу улитки растворяется все, в том числе связи между клетками, а мембрана нейрона не повреждается. Нейрон — очень важная деталь мозга, неудивительно, что она одета в гораздо более прочную, чем другие клетки организма, оболочку, способную уберечь ее от многих неприятностей.Все же извлечь из мозга нейрон в абсолютно не поврежденном виде пока не удается. Невозможно выплести из ткани ганглия тонюсенькие отростки нервной клетки. Они легко рвутся. Ученых очень беспокоил вопрос — как залечить или заделать дырки в местах обрыва отростков, чтобы вещество клетки не выливалось наружу, как льется вода из крана, если оставить его открытым? К счастью, опасения оказались необоснованными. Нервные клетки снабженым удивительным механизмом самовосстановления. Чуть только произошел обрыв отростка, оболочка на конце культи начинает сжиматься. Мгновенье-другое, и рана закрылась. Еще две-три секунды, и клетка полностью здорова. Можно приступать к изучению ее деятельности.Чудеса на этом не кончились. В Киеве для нервной клетки удалось соорудить даже «тиски». Их конструкция предельно проста. В центре тонкой металлической пластинки высверливается микроскопический конусообразный канал. Его размер подбирается таким образом, чтобы верхнее, входное отверстие было чуть больше нейрона, а нижнее, выходное — чуть меньше. Готовой пластинкой перегораживают крохотный сосуд. В его верхнюю часть наливают специальный раствор, чтобы нервная клетка могла чувствовать себя нормально, и опускают туда нейрон, извлеченный из мозга улитки. Жидкость просачивается сквозь отверствие в перегородке — и в конце концов засосет в канал нейрон. Если его стенки предварительно смазать специальным клеем, а в арсенале ученых нашелся и он, то нервная клетка, попав в отверствие, прилипает к его стенкам и прочно закрепляется. Зажатый в «тисках» нейрон — прекрасный объект для исследования. В крупные клетки моллюсков удается одновременно ввести до пяти стеклянных электродов. Нейроны удивительно выносливы. Пронзенные несколькими электродами, они много часов проживут в питательном растворе и будут нормально работать.Нейрон слишком сложный объект. Даже извлеченный из мозга и прочно закрепленный, пронзенный несколькими электродами, он продолжает хранить свои тайны. Исследование пошло бы быстрее, если бы и нейрон удалось разобрать на составные части. В первую очередь исследователям хотелось получить кусочек живой, полноценной, надежно закрепленной мембраны, чтобы ее было удобно исследовать.Удалось осуществить и этот фантастический проект. Для изготовления препарата используют зажатый в «тисках» нейрон. Мы уже неоднократно сталкивались с тем, насколько прочна и устойчива его оболочка. Действительно прочна, но есть немало способов, на первый взгляд совсем безобидных, позволяющих ее повредить. Кальций — один из важных компонентов жизнедеятельности нейрона. Обработка нервной клетки раствором, не содержащим кальция, приводит к появлению в его оболочке множества ультрамикроскопических отверстий. В результате она превращается в мелкое сито, легко отсеивающее мелкие ионы натрия, калия, кальция, хлора. Значительно более крупные молекулы белков и других органических веществ пройти через эти отверстия не могут.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25