А-П

П-Я

А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

В лучшем случае поиски будут невероятно затруднены и затянуты. Истории полярной авиации знает печальные результаты таких поисков.
Какой же тактики следует придерживаться при поисках самолетов? Полярные пилоты и штурманы располагают уже богатым опытом поисковых полетов. Пора этот ценный опыт собрать, тщательно изучить и свести в стройную систему.
Я лично считаю, — и в этом лишний раз убеждают описанные выше примеры, — что основой тактики поисков в Арктике должно быть создание авиационной базы на кратчайшем расстоянии от затерявшегося самолета. На базе обязательно организуется метеорологический пункт.
Большое значение имеет выбор типа самолетов. Одни только тяжелые корабли для этой цели малопригодны. Они хотя и обладают большим радиусом действия, зато лишены многих достоинств, присущих легким самолетам. Посадка и взлет большого корабля в ледяных пустынях очень затруднительны. У него гораздо меньше маневренности, чем у легкого самолета. Поэтому рациональнее в состав поисковой экспедиции включать один-два тяжелых и несколько легких самолетов. Тяжелые корабли снабжают всем необходимым поисковую авиабазу, а поиски ведутся исключительно легкими самолетами.
Прежде чем приступать к поискам, нужно хорошо изучить метеорологическую и ледовую обстановку, в которой затерялся самолет. Эти сведении можно получить с помощью синоптиков, метеорологов и штурманов.
Определив приблизительно место вынужденной посадки самолета, следует этот район разбить на участки — квадраты или секторы — и по ним вести поиски. Величина участка зависит от метеорологических условий, от видимости. Полусторона первого квадрата может быть равна примерно 5 милям. Следующий квадрат должен отступать от первого на такое же расстояние. Увеличивая постепенно стороны квадрата на 10 миль, поиски следует продолжать но все расширяющемуся радиусу. Если поиски ведутся по секторам, то очередность их обследования устанавливается в зависимости от ледовой обстановки и степени вероятности посадки самолета в том или ином секторе.
Предварительно необходимо облетать все районы, произвести стратегическую разведку. Следует при этом учесть, что даже в самых тяжелых условиях пилот постарается, по возможности, сесть на менее торосистые льды, на ровную площадку.
Нужно также снабдить полярных штурманов заранее разработанными астрономическими и другими аэронавигационными таблицами для всех широт на весь год. Это окажет им большую помощь.

АЭРОНАВИГАЦИЯ НА ВЫСОКИХ ШИРОТАХ
Оборудование штурманской рубки
Для полетов на высоких широтах штурманская рубка должна быть оборудована всеми современными аэронавигационными приборами.
Готовясь к первому полету за 80ю параллель, я взял, помимо обычного оборудования, еще специальные приборы для высокоширотных полетов. Так, например, наряду с авиационными компасами у нас были «шлюпочные» и солнечные компасы. Азимутальный круг, разграфленный на 360 градусов, со шпилькой в центре, позволял корректировать показания магнитного компаса. Захватил я также секстан для астрономической ориентировки.

Рис. 5. Секстан
— Зачем ты берешь его? — недоумевали товарищи. — Ведь мы не мореплаватели.
Действительно, раньше секстан в аэронавигации почти не применялся. Я же решил им воспользоваться — и не пожалел. Секстан сослужил нам добрую службу.
В то время — это было в 1936 году — существовали таблицы воздушной астрономии только до широты 60°. С помощью Астрономического института мы составили новые таблицы для ориентировки по солнцу и луне, подготовили эфемериды светил. Заново были составлены также таблицы сомнеровых линий. Штурманская рубка самолета, на котором я летел к Северному полюсу, была оборудована еще лучше. Стальные части, отрицательно влиявшие на работу магнитных приборов, были заменены деталями из диамагнитных материалов. На самолете установили оптические солнечные компасы конструкции инженера Сергеева. Обычно гирокомпасы стоят только в рубке пилота. Это неудобно. Для контроля причины отклонения стрелки магнитного компаса (на высоких широтах креповая девиация весьма значительна) штурман вынужден все время заглядывать к пилоту, где находится гирокомпас. На нашем самолете (как, впрочем, и на остальных кораблях, летевших на полюс) гирокомпас был установлен также и в штурманской рубке. По гирокомпасу штурман сразу может определить, почему «гуляет» стрелка компаса — от крена ли самолета, или от небрежного пилотирования.

Рис. 6. В штурманской рубке «Н-169»
Высокой сценки заслуживает оригинальный метод получении сомнеровых линий, разработанный инженером Сергеевым. Его метод позволял нам даже на полюсе получать линию Сомнера всего в течение трех минут, тогда как обычно из это затрачивается не менее десяти минут.
Астрономический институт им. Штернберга разработал специальные астрономические таблицы для высоких широт. На корабли были взяты, на этот раз уже без всяких споров, и секстаны.
Флагштурман Спирин одобрил оборудование штурманской рубки. Вместе с ним мы разработали навигационную карту полета на полюс. Собственно говоря, это не была карта в обычном понимании. Для полета выше 82° специально были вычерчены картографические сетки в центральной проекции масштабом 1:1000000 и 1:2000000. На первой карте меридианы обозначены через каждые десять градусов, а параллели — через один градус. Вторая сетка служила для нанесения местоположения самолета посредством метода радионавигации.
По образцу штурманских рубок кораблей, летевших на полюс, оборудовал я и рубку самолета «Н-275», на котором работал в последние годы. Благодаря этому наш самолет успешно летал далеко на север, находясь в воздухе без посадки но двадцать — двадцать два часа.
Карданный компас
На материке летчики пользуются апериодическим компасом. Он вполне удовлетворяет пилота и штурмана. Отклонение картушки не превышает двух градусов в обе стороны.
Когда я попал в Арктику, меня поразило странное явление: картушка компаса отклонялась часто до 25°.
— Что у вас, компас пьян? — удивлялся я.
Но тот же компас на мороком корабле на тех же широтах ведет себя несравненно лучше. В чем дело? Я стал присматриваться к морскому компасу. Оказывается, весь секрет в том, что на корабле компас подвешен на карданах, а на самолете он жестко закреплен. Малейшее изменение положения самолета вызывает креповую девиацию компаса.
Жидкость в авиационных компасах более вязкая, чем в морских, где картушка свободно плавает в спирте. В морских компасах нет затухателей, которые установлены на авиационных для большей устойчивости картушки.
На авиационных, апериодических компасах картушка, отклонившись от меридиана, при возвращении не переходит через него. На морском, периодическом компасе картушка свободно колеблется по обе стороны меридиана.
На картушку — магнитную стрелку компаса — действуют две силы земного магнетизма: горизонтальная составляющая и вертикальная составляющая. Первая устанавливает картушку в горизонтальной плоскости земного магнетизма, вторая создает наклонение магнитной стрелки. В Москве, например, горизонтальная составляющая сила достаточно велика, чтобы держать стрелку более или менее устойчиво в плоскости магнитного меридиана. Сила вертикальной составляющей здесь совершенно ничтожна. На высоких широтах наблюдается обратная картина: сила горизонтальной составляющей настолько незначительна, что с трудом устанавливает стрелку на магнитном меридиане, зато вертикальная составляющая сила резко возрастает. Потому-то на магнитном полюсе стрелка становится вертикально.
На высоких широтах малейший крен самолета отражается на показаниях компаса. Стрелка под влиянием вертикальной составляющей силы начинает, как говорят, «плясать». Бэрд, Рисер-Ларсен, Эльсворт и другие полярные навигаторы после своих полетов в Арктику пришли к выводу, что магнитные компасы на больших широтах малопригодны. В свое время компас изрядно подвел Амундсена. Когда солнце скрылось за облаками и аэронавигаторы стали ориентироваться по магнитному компасу, дирижабль, вместо того чтобы подвигаться по прямой, сделал круг на одном месте.
О том, что стандартные магнитные компасы на севере отчаянно врут, знают все пилоты. Уже за 78-й параллелью ими пользоваться невозможно.
Значит ли это, что при полетах на высоких широтах магнитный компас совершенно бесполезен? Нет, не значит. Ни радиокомпас, ни солнечный компас, ни астрономическая ориентировка не могут полностью заменить магнитного компаса. Разве не известны случаи, когда радиокомпас выходил из строя, а определиться по светилам не было никакой возможности?

Рис. 7. Карданный периодический компас
Магнитный компас безусловно необходим — этого теперь никто не станет оспаривать, — но не апериодический.
Надо мною смеялись, когда в перелет на Землю Франца-Иосифа я взял два «шлюпочных» компаса. Однако пользоваться в полете пришлось не обычными авиационными компасами, а именно этими «шлюпочными». Они себя оправдали.
Как-то, воспользовавшись нелетной погодой, я занялся усовершенствованием авиационного компаса. Чтобы сделать его более чувствительным, дать возможность стрелке свободно вращаться, лигроин я заменил менее вязкой жидкостью — грозненским бензином. Вынув затухатель, я превратил компас в периодический. Установкой его на кардан удалось добиться резкого уменьшения креновой девиации.
Надо учесть еще одно обстоятельство, влияющее на поведение компаса, — индуктивные токи, которые появляются в проводах при включении умформера радиостанции. Все электрические приборы и провода рекомендуется убрать подальше от компаса.
Усовершенствованный компас оказал нам большую услугу при полете на Северный полюс. Показания компаса не расходились с показаниями других приборов. Впоследствии такие компасы были установлены на нескольких самолетах полярной авиации, и все они отлично работали. Чтобы не быть голословным, приведу выдержку из оперативного отчета самолета «Н-275» за 1939 год:
«Вся материальная часть работала прекрасно. Несколько странно вели себя магнитные компасы. На широте 79°00 и долготе 133°00 стрелки компасов «АН-4» «Кольсман» «гуляли» до ±55°, в то время как карданный компас «АН-4—А» вел себя более прилично, картушка уходила не более ±4–6°».
Определение магнитного склонения
Как уже говорилось, на высоких широтах стрелка магнитного компаса отклоняется от истинного меридиана значительно больше, чем на обычных широтах. Но как велико это отклонение? Как определить степень точности показания магнитного компаса?
В лабораторных условиях склонение определяется при помощи магнитных приборов. В полете такая проверка немыслима. Можно рекомендовать метод сравнения истинного азимута с магнитным пеленгом.
Для получения истинного азимута прежде всего определяется высота светила при помощи секстана.
Азимут светила определяется по формуле:
ctg A = cos ? tg ? cosec t — sin ? ctg t,
или
sin A = cos ? sin t sec hсч,
где A — азимут светила, ? — широта, ? — склонение светила, t— часовой угол светила, hсч — высота светила (расчетная).
Широту ? приближенно установить несложно, пользуясь счислением. Склонение светила о указано в астрономическом ежегоднике. Часовой угол светила t рассчитывается по часам.
Формула для определения истинного азимута — не что иное, как решение задачи об элементах сферического треугольника. При помощи мореходных таблиц определяются все элементы уравнения и выводится неизвестный нам А — азимут.
Теперь уже нетрудно выяснить магнитное склонение. Оно равняется истинному пеленгу минус магнитный пеленг, а истинный пеленг равен азимуту светила. Формулу магнитного склонения можно выразить так:
? М = ИП — МП,
где МП и есть азимут светила
При работе в воздухе вводится поправка на девиацию.
Знание магнитного склонения дает возможность пользоваться магнитным компасом на любых широтах. В частности, этот метод помог нам найти папанинский лагерь.
Наибольшая трудность в вычислении магнитного склонения заключается в определении азимута светила. Не всегда это просто сделать. В районе Северного полюса мне приходилось сутками дежурить у секстана, чтобы улучить момент появления солнца из-за облака. Итак, магнитный компас, применение которого на высоких широтах многие считали невозможным, безотказно служил даже на Северном полюсе. Отсюда надо сделать вывод, что в аэронавигации нельзя пренебрегать ни одним из известных уже методов. Пользуясь комбинированным методом аэронавигации, контролируя один метод другим, штурман обеспечит полет точным курсом.
Комбинированный метод аэронавигации
Аэронавигация как наука о безопасном самолетовождении в любых условиях, пожалуй, самая молодая из всех наук. Пока пилотам приходилось летать только по знакомым, давно облетанным трассам, над линиями железных дорог, над реками, городами, над местностью, населенной и богатой земными ориентирами и точными картами, не было особой нужды и в отдельной аэронавигационной науке. Полеты же по незнакомой, слабоизученной местности, полеты над бескрайными просторами Арктики, ночные, высотные и дальние полеты немыслимы без аэронавигации, основанной на законах математики и физики.
Аэронавигация складывается из следующих основных элементов: счисления, астроориентировки, радионавигации и самолетовождения по земным ориентирам.
Самолетовождение по земным ориентирам сводится к сличению карты с местностью, над которой происходит полет.
Метод счисления позволяет прокладывать курс самолета путем расчетов скорости и времени полета, а также сноса корабля ветром. Задача астроориентировки — определять местоположение самолета по светилам. Зная, где находится самолет, можно контролировать курс и вносить в него поправки.
Радионавигация дает возможность совершать полеты при любой погоде с помощью радиокомпасов, радиопеленгационных приборов и радиомаяков.
Успешное самолетовождение возможно лишь при полном согласовании работы пилота и штурмана. Иной пилот, быть может и хорошо владеющий техникой пилотирования, но плохо разбирающийся в аэронавигации, не желает считаться с расчетами. Он уповает только на свое мастерство, на практический опыт. Показания приборов, проложенный штурманом курс для него неавторитетны.
Пока видны земные ориентиры, пока внизу расстилается знакомая местность, такой пилот кое-как ведет машину. Но стоит погоде испортиться, как бесследно исчезает и «мастерство».
— Где мы? Дай курс! — спохватившись, кричат пилот штурману.
Штурман бессилен сразу дать ответ. Вести учет пути по дико пляшущим стрелкам приборов он никак не может.
Для того чтобы притти точно к цели, пилот не должен без согласования со штурманам отклоняться ни на один градус от заданного курса. Это, между прочим, записано в уставах для военных летчиков. Не в упрек старым пилотам, молодежь более строго выдерживает курс, тщательнее наблюдает за приборами. А есть опытные пилоты, для которых отклонение от курса на пять-семь градусов — пустяк, вообще не заслуживающий внимания.
Не следует забывать о том, что даже идеально выверенный компас работает с точностью ±2°. При расчетах пути следования обычно допускается неточность до ±3°. Таким образом, всегда, придется считаться с возможной ошибкой на 5°. Если к этому пилот добавит еще собственную «поправку», то самолет может отклониться от курса на 10–12°. При полете по прямой на 500 км десять градусов означают уход в сторону от цели на 87 км. Можно смело сказать, что в Арктике добрая половина вынужденных посадок и аварий происходит только потому, что пилот почему-то счел для себя необязательным прислушаться к голосу штурмана.
Не так давно среди работников полярной авиации широкой популярностью пользовалась «теория» подмены всей аэронавигации одним только радиовождением. Спору нет: радиокомпасы, радиомаяки — могучее средство для правильного вождения самолетов. Можно привести десятки, сотни примеров, когда самолеты блестяще приходили к цели, пользуясь одними только радиоприборами. Однако это вовсе не значит, что они могут заменить все остальные приборы, что все остальные методы определения места и курса можно сдать в архив.
И на солнце бывают пятна. Случаются «пятна» и в радионавигации.
Вспоминается перелет двух самолетов в бухту Тихую. На одном самолете были радиокомпас и радиопеленгатор, на другом, с которым я летел, не было ни того, ни другого. Ведущим пошел первый самолет как технически более оснащенный, а мы пристроились в хвосте. Командир самолета предложил мне отдыхать:
— Делать тебе все равно нечего, за тебя все сделает радиолуч.
Я отказался от этого заманчивого предложения и продолжал вести расчеты курса по навигационным приборам.
1 2 3 4 5 6